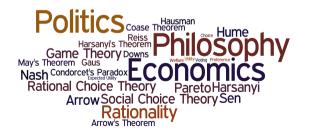
PHPE 400 Individual and Group Decision Making

Eric Pacuit University of Maryland pacuit.org



Take umbrella (A)endLeave umbrella (B)

Rain (s_1)	No rain (s_2)	
encumbered, dry (<i>o</i> ₁)	encumbered, dry (o ₁)	
free, wet (o_2)	free, dry (o_3)	

 $A(s_1) = A(s_2) = o_1$ $B(s_1) = o_2, B(s_2) = o_3$

	Rain (s_1)	No rain (s_2)
Take umbrella (A)	encumbered, dry (<i>o</i> ₁)	encumbered, dry (o_1)
Leave umbrella (B)	free, wet (o_2)	free, dry (o_3)

Suppose that $P(s_1) = 0.6$ and $P(s_2) = 0.4$ (the decision maker believes that there is a 60% chance that it will rain).

	Rain (s_1)	No rain (s_2)
Take umbrella (A)	encumbered, dry (<i>o</i> ₁)	encumbered, dry (o_1)
Leave umbrella (B)	free, wet (o_2)	free, dry (o_3)

Suppose that $P(s_1) = 0.6$ and $P(s_2) = 0.4$ (the decision maker believes that there is a 60% chance that it will rain).

Suppose that the decision maker's utility for the outcomes is: $u(o_1) = 5$, $u(o_2) = 0$ and $u(o_3) = 10$.

Rain
$$(s_1)$$
No rain (s_2) $P(s_1) = 0.6$ $P(s_2) = 0.4$ Take umbrella (A)encumbered, dry (o_1)
 $u(o_1) = 5$ encumbered, dry (o_1)
 $u(o_1) = 5$ Leave umbrella (B)free, wet (o_2)
 $u(o_2) = 0$ free, dry (o_3)
 $u(o_3) = 10$

$$EU(A, u) = P(s_1) \times u(A(s_1)) + P(s_2) \times u(A(s_2))$$

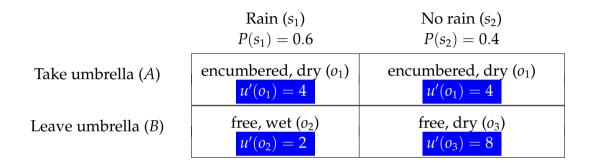
$$EU(B, u) = P(s_1) \times u(B(s_1)) + P(s_2) \times u(B(s_2))$$

Rain
$$(s_1)$$
No rain (s_2) $P(s_1) = 0.6$ $P(s_2) = 0.4$ Take umbrella (A)encumbered, dry (o_1)
 $u(o_1) = 5$ encumbered, dry (o_1)
 $u(o_1) = 5$ Leave umbrella (B)free, wet (o_2)
 $u(o_2) = 0$ free, dry (o_3)
 $u(o_3) = 10$

$$EU(A, u) = 0.6 \times 5 + 0.4 \times 5 = 5$$

 $EU(B, u) = 0.6 \times 0 + 0.4 \times 10 = 4$

EU(A, u) > EU(B, u), so the decision maker strictly prefers *A* to *B*.



$$EU(A, u') = 0.6 \times 4 + 0.4 \times 4 = 4$$

 $EU(B, u') = 0.6 \times 2 + 0.4 \times 8 = 4.4$

EU(A, u') < EU(B, u'), so the decision maker strictly prefers *B* to *A*.

	$\begin{array}{l} \text{Rain} (s_1) \\ P(s_1) = 0.6 \end{array}$	No rain (s_2) $P(s_2) = 0.4$
Take umbrella (A)	encumbered, dry (o ₁)	encumbered, dry (o_1)
Leave umbrella (B)	free, wet (o_2)	free, dry (o ₃)

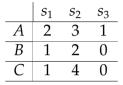
$$u(o_3) = 10 > u(o_1) = 5 > u(o_2) = 0$$

$$EU(A, u) = 0.6 \times 5 + 0.4 \times 5 = 5 > EU(B, u) = 0.6 \times 0 + 0.4 \times 10 = 4$$

$$u'(o_3) = 8 > u'(o_1) = 4 > u'(o_2) = 2$$

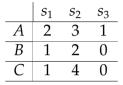
$$EU(A, u') = 0.6 \times 4 + 0.4 \times 4 = 4 < EU(B, u') = 0.6 \times 2 + 0.4 \times 8 = 1.2 + 3.2 = 4.4$$

For all acts *A* and *B* and utility functions *u*, if EU(A, u) > EU(B, u) and *u'* is a linear transformation of *u* (i.e., $u'(\cdot) = a \times u(\cdot) + b$ for some $a, b \in \mathbb{R}$ with a > 0), then EU(A, u') > EU(B, u')



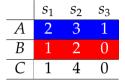
Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*?

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*?



Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*? No!

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*? Yes!

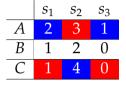


Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*? No!

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*? Yes!

X strictly dominates *Y* when for all states *s*, u(X(s)) > u(Y(s)).

► *A* strictly dominates *B*

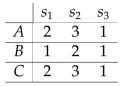


Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*? No!

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*? Yes!

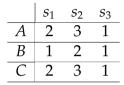
X strictly dominates *Y* when for all states *s*, u(X(s)) > u(Y(s)).

- ► *A* strictly dominates *B*
- ► *A* does not strictly dominate *C*

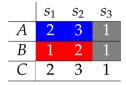


Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*?

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*?



Does the decision maker strictly prefer *A* to *B*? Does the decision maker strictly prefer *A* to *C*?

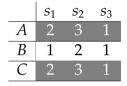


Does the decision maker strictly prefer A to B? Depends...

Does the decision maker strictly prefer A to C? No!

X weakly dominates *Y* when for all states *s*, $u(X(s)) \ge u(Y(s))$ and there is some *s*' such that u(X(s')) > u(Y(s')).

► *A* weakly dominates *B*



Does the decision maker strictly prefer A to B? Depends...

Does the decision maker strictly prefer A to C? No!

X weakly dominates *Y* when for all states *s*, $u(X(s)) \ge u(Y(s))$ and there is some *s*' such that u(X(s')) > u(Y(s')).

- ► *A* weakly dominates *B*
- ► *A* does not weakly dominate *C*

R. Nozick. Newcomb's Problem and Two Principles of Choice. 1969.

There are two boxes in front of us:

- ▶ box *A*, which contains \$1,000;
- ▶ box *B*, which contains either \$1,000,000 or nothing.

There are two boxes in front of us:

- ▶ box *A*, which contains \$1,000;
- ▶ box *B*, which contains either \$1,000,000 or nothing.

We have two choices:

- ▶ we open only box *B*.
- ▶ we open both box *A* and box *B*;

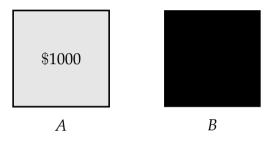
There are two boxes in front of us:

- ▶ box *A*, which contains \$1,000;
- ▶ box *B*, which contains either \$1,000,000 or nothing.

We have two choices:

- ▶ we open only box *B*.
- ▶ we open both box *A* and box *B*;

You can see inside box *A*, but not inside box *B*. We can keep whatever is inside any box we open, but we may not keep what is inside a box that we do not open.



Choice:

one-box: choose box *B* two-box: choose box *A* and *B*

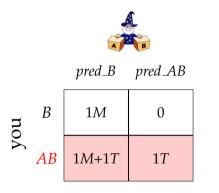
A famous example: Newcomb's paradox

A very powerful being, who has been invariably accurate in his predictions about our behavior in the past, has already acted in the following way:

If he has predicted we will open just box *B*, he has put \$1,000,000 in box *B*.
If he has predicted we open both boxes, he has put nothing in box *B*.
What should we do?

pred_B pred_AB

nc	В	1M	0
yc	AB	1 <i>M</i> +1 <i>T</i>	1T

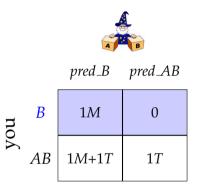


Principle of dominance: take both boxes.

- ▶ P(pred_B | B): The probability that the wizard predicted you would choose box B given that you decided to choose box B.
- ► *P*(*pred_AB* | *B*): The probability that the wizard predicted you would choose both boxes *given that you decided to choose box B*.

- ▶ P(pred_B | B): The probability that the wizard predicted you would choose box B given that you decided to choose box B.
- ► *P*(*pred_AB* | *B*): The probability that the wizard predicted you would choose both boxes *given that you decided to choose box B*.
- ► P(pred_B | AB): The probability that the wizard predicted you would choose box B given that you decided to choose both boxes.
- ► *P*(*pred_AB* | *AB*): The probability that the wizard predicted you would choose both boxes *given that you decided to choose both boxes*.

- ✓ P(pred_B | B): The probability that the wizard predicted you would choose box B given that you decided to choose box B.
- ✗ P(pred_AB | B): The probability that the wizard predicted you would choose both boxes given that you decided to choose box B.
- ✗ P(pred_B | AB): The probability that the wizard predicted you would choose box B given that you decided to choose both boxes.
- ✓ P(pred_AB | AB): The probability that the wizard predicted you would choose both boxes given that you decided to choose both boxes.



Expected utility maximization: take box *B*.

 $P(pred_B \mid B)1M + P(pred_AB \mid B)0 > P(pred_B \mid AB)(1M + 1T) + P(pred_AB \mid AB)1T$

What the Predictor did yesterday is *probabilistically dependent* on the choice today, but *causally independent* of today's choice.

Act-state independence: For all states *s* and actions *X*, P(s) = P(s | X)

J. Collins. *Newcomb's Problem*. International Encyclopedia of Social and Behavorial Sciences, 1999.