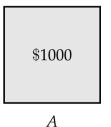
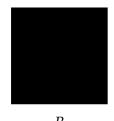
PHPE 400 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org


Politics
Coase Theorem
Harsanyis Theorem
Philosophy
May's Theorem
Gaus
Nash Condorcet's Paradox
Rational Choice Theory
ArrowSocial Choice Theory Sen
Rationality
Arrows Theorem


Arrows Theorem

Pareto Harsanyi
Arrows Theorem

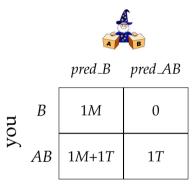
Newcomb's Problem

Choice:

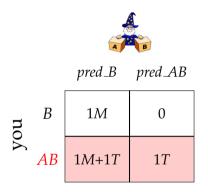
one-box: choose box *B*

two-box: choose box *A* and *B*

A famous example: Newcomb's paradox



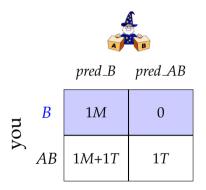
A very powerful being, who has been invariably accurate in his predictions about our behavior in the past, has already acted in the following way:


- 1. If he has predicted we will open just box B, he has put \$1,000,000 in box B.
- 2. If he has predicted we open both boxes, he has put nothing in box B.

What should we do?

Principle of dominance: take both boxes.

- ▶ $P(pred_B \mid B)$: The probability that the wizard predicted you would choose box B given that you decided to choose box B.
- ▶ $P(pred_AB \mid B)$: The probability that the wizard predicted you would choose both boxes *given that you decided to choose box B*.



- ▶ $P(pred_B \mid B)$: The probability that the wizard predicted you would choose box B given that you decided to choose box B.
- ► *P*(*pred_AB* | *B*): The probability that the wizard predicted you would choose both boxes *given that you decided to choose box B*.
- ▶ $P(pred_B \mid AB)$: The probability that the wizard predicted you would choose box B given that you decided to choose both boxes.
- ► *P*(*pred_AB* | *AB*): The probability that the wizard predicted you would choose both boxes *given that you decided to choose both boxes*.

- ✓ $P(pred_B \mid B)$: The probability that the wizard predicted you would choose box B given that you decided to choose box B.
- ✗ P(pred_AB | B): The probability that the wizard predicted you would choose both boxes given that you decided to choose box B.
- \nearrow $P(pred_B \mid AB)$: The probability that the wizard predicted you would choose box B given that you decided to choose both boxes.
- ✓ *P*(*pred_AB* | *AB*): The probability that the wizard predicted you would choose both boxes *given that you decided to choose both boxes*.

Expected utility maximization: take box *B*.

 $P(pred_B \mid B)1M + P(pred_AB \mid B)0 > P(pred_B \mid AB)(1M + 1T) + P(pred_AB \mid AB)1T$

What the Predictor did yesterday is *probabilistically dependent* on the choice today, but *causally independent* of today's choice.

Act-state independence: For all states s and actions X, $P(s) = P(s \mid X)$

J. Collins. *Newcomb's Problem*. International Encyclopedia of Social and Behavorial Sciences, 1999.

Game Theory

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

The Guessing Game (Round 2)

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess?

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? 100

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? 180, 99

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? 190, 99, ..., 67

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? 100, 99, ..., 87, ..., 2, 1

Guess a number between 1 & 100. The closest to 2/3 of the average wins.

What number should you guess? 190, 99, ..., 87, ..., 2, (1)