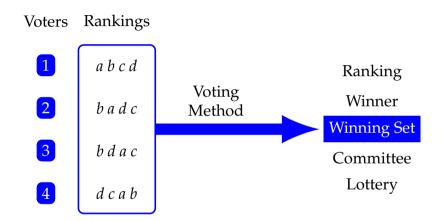
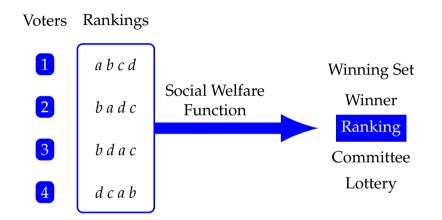
PHPE 400 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org


Politics
Coase Theorem
Harsanyis Theorem Philosophy
May's Theorem Gaus
Nash Condorcets Paradox Economics
Rational Choice Theory Pareto Harsanyi
Arrow Social Choice Theory Sen
Rational Choice Theory Pareto Harsanyi
Arrow Social Choice Theory Pareto Harsanyi
Arrow Social Choice Theory Pareto Harsanyi
Arrow Social Choice Theory Sen
Rational Choice Theory Sen

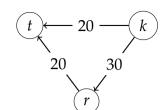

	Plurality	Borda	Instant Runoff	Coombs	Cope- land	Mini- max	MWSL
Anonymity	✓	√	✓	✓	√	√	✓
Neutrality	✓	√	✓	✓	✓	√	✓
Pareto	\checkmark	✓	✓	✓	✓	✓	✓
Condorcet Winner	_	_	_	_	√	√	✓
Condorcet Loser	_	√	✓	✓	✓	_	✓
Monotonicity	✓	√	_	_	√	√	✓
Immunity to Spoilers	_	_	_	_	_	√	✓
Multiple Districts	✓	✓	_	_	_	_	_

Problem: There is no voting method that satisfies *all* of the principles of group decision making. So, how should you choose which voting method to use?

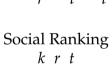
Problem: There is no voting method that satisfies *all* of the principles of group decision making. So, how should you choose which voting method to use?

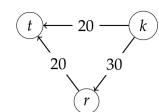
A fundamental result in social choice theory suggests that this situation is to be expected...

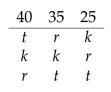
Social Welfare Functions

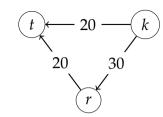

A **Social Welfare Function** f maps an election from a set \mathcal{D} of possible elections to an ordering on the set of candidates.

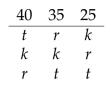
Comments

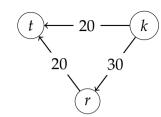

- $ightharpoonup \mathcal{D}$ is called *domain* of the function f.
- ► Social Welfare Functions are *decisive*: every profile **P** in the domain is associated with exactly one ordering over the candidates
- ▶ For each profile **P**, the ordering $f(\mathbf{P})$ is called the **social ordering** of **P** according to f.


$$\begin{array}{c|cccc} 40 & 35 & 25 \\ \hline t & r & k \\ k & k & r \\ r & t & t \end{array}$$


Social Ranking $k f(\mathbf{P}) r f(\mathbf{P}) t$

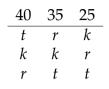


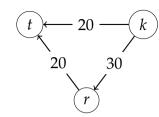




k r t

Majority Ordering, Copeland, Borda

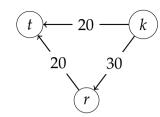




k r t

k t r

Majority Ordering, Copeland, Borda

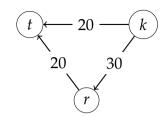


k r t

k t r

Majority Ordering, Copeland, Borda Minimize the maximum loss

$$\begin{array}{c|cccc} 40 & 35 & 25 \\ \hline t & r & k \\ k & k & r \\ r & t & t \end{array}$$


k r t

k t r

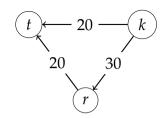
r t k

Majority Ordering, Copeland, Borda Minimize the maximum loss

40	35	25
\overline{t}	r	k
k	k	r
r	t	t

k r t

k t r


r t k

Majority Ordering, Copeland, Borda

Minimize the maximum loss

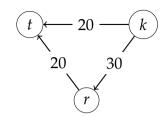
Instant Runoff Removal Order

$$\begin{array}{c|cccc} 40 & 35 & 25 \\ \hline t & r & k \\ k & k & r \\ r & t & t \end{array}$$

k r t

k t r

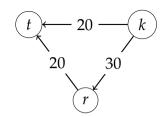
r t k


r k t

Majority Ordering, Copeland, Borda

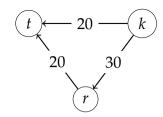
Minimize the maximum loss

Instant Runoff Removal Order

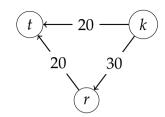

40	35	25
t	r	k
k	k	r
r	t	t

k r t
k t r
Majority Ordering, Copeland, Borda
k t r
Minimize the maximum loss
r t k
Instant Runoff Removal Order
r k t
Iterative Instant Runoff

7/23

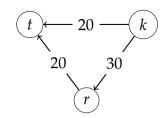

$$\begin{array}{c|cccc} 40 & 35 & 25 \\ \hline t & r & k \\ k & k & r \\ r & t & t \end{array}$$

k r t
k t r
Majority Ordering, Copeland, Borda
k t r
Minimize the maximum loss
r t k
Instant Runoff Removal Order
r k t
Iterative Instant Runoff


t r k

40	35	25
t	r	k
k	k	r
r	t	t

k r t
k t r
Majority Ordering, Copeland, Borda
k t r
Minimize the maximum loss
r t k
Instant Runoff Removal Order
r k t
Iterative Instant Runoff
t r k
Plurality scores


$$\begin{array}{cccc} 40 & 35 & 25 \\ \hline t & r & k \\ k & k & r \\ r & t & t \end{array}$$

t k r

k r t
k t r
Majority Ordering, Copeland, Borda
k t r
Minimize the maximum loss
r t k
Instant Runoff Removal Order
r k t
Iterative Instant Runoff
t r k
Plurality scores

40	35	25
t	r	k
k	k	r
r	t	t

k r t
k t r
k t r
Minimize the maximum loss
r t k
Instant Runoff Removal Order
r k t
Iterative Instant Runoff
t r k
Plurality scores
t k r
Iterative Plurality

Examples

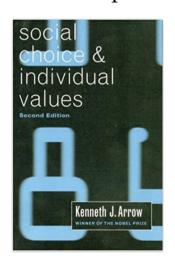
Borda Ordering: $Borda(\mathbf{P})$ is the ordering where a is ranked above or tied with b provided that the Borda score of a is greater than or equal to the Borda score for b in the profile \mathbf{P} .

Examples

Borda Ordering: $Borda(\mathbf{P})$ is the ordering where a is ranked above or tied with b provided that the Borda score of a is greater than or equal to the Borda score for b in the profile \mathbf{P} .

Plurality Ordering: $Plurality(\mathbf{P})$ is the ordering where a is ranked above or tied with b provided that the Plurality score of a is greater than or equal to the Plurality score for b.

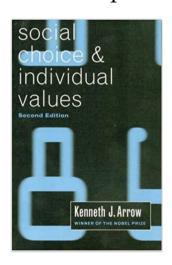
Examples


Borda Ordering: $Borda(\mathbf{P})$ is the ordering where a is ranked above or tied with b provided that the Borda score of a is greater than or equal to the Borda score for b in the profile \mathbf{P} .

Plurality Ordering: $Plurality(\mathbf{P})$ is the ordering where a is ranked above or tied with b provided that the Plurality score of a is greater than or equal to the Plurality score for b.

Majority Ordering: $Maj(\mathbf{P})$ is the ordering where a is ranked above or tied with b provided that $Margin_{\mathbf{P}}(a,b) \geq 0$

Arrow's Impossibility Theorem


"For an area of study to become a recognized field, or even a recognized subfield, two things are required: It must be seen to have coherence, and it must be seen to have depth. The former often comes gradually, but the latter can arise in a single flash of brilliance....With social choice theory, there is little doubt as to the seminal result that made it a recognized field of study:

Arrow's impossibility theorem."

A. Taylor, Social Choice and the Mathematics of Manipulation

Arrow's Impossibility Theorem

E. Maskin and A. Sen, editors (2014). *The Arrow Impossibility Theorem*. Columbia University Press.

M. Morreau (2019). *Arrow Impossibility Theorem*. Stanford Encyclopedia of Philosophy.

P. Suppes (2015). *The pre-history of Kenneth Arrow's social choice and individual values*. Social Choice and Welfare 25(2), pp. 319-326.

Arrow's Axioms

Universal Domain

Voter's are free to choose any ranking, and the voters' choices are independent.

Universal Domain

Voter's are free to choose any ranking, and the voters' choices are independent.

The domain of f is the set of *all* profiles. All of the examples of social welfare functions we will study satisfy universal domain.

Universal Domain

Voter's are free to choose any ranking, and the voters' choices are independent.

The domain of f is the set of *all* profiles. All of the examples of social welfare functions we will study satisfy universal domain.

"If we do not wish to require any prior knowledge of the tastes of individuals before specifying our social welfare function, that function will have to be defined for every logically possible set of individual orderings."

(Arrow, p. 24)

Rationality

The social ranking is a **rational preference** on the set of candidates.

For all profile **P** in the domain of f, the ordering f(**P**) is a complete and transitive ordering over the set of candidates.

Rationality

The social ranking is a **rational preference** on the set of candidates.

For all profile **P** in the domain of f, the ordering f(**P**) is a complete and transitive ordering over the set of candidates.

Example: Plurality and Borda always produces a complete and transitive ranking of the candidates, but the Majority ordering may output rankings that are not transitive.

Pareto/Unanimity

If each voter ranks *a* strictly above *b*, then so does the social ranking.

Pareto/Unanimity

If each voter ranks *a* strictly above *b*, then so does the social ranking.

For all profiles **P** in the domain of f: If a **P** $_i$ b for each $i \in V$ then a is strictly preferred to b according to f(**P**)

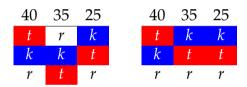
Pareto/Unanimity

If each voter ranks *a* strictly above *b*, then so does the social ranking.

For all profiles **P** in the domain of f: If a **P** $_i$ b for each $i \in V$ then a is strictly preferred to b according to f(**P**)

For example, Plurality violates Pareto, but Borda and the Majority Ordering both satisfy Pareto.

Voting Splitting


40	35	25
\overline{t}	r	\overline{k}
k	k	t
r	t	r

According to Plurality, *t* wins and *k* loses... even though a majority of voters prefer *k* to *t*.

r **splits the vote** of all voters rankings k above t.

Voting Splitting

Independence of Irrelevant Alternatives: If *k* wins and *t* loses in the profile on the right, then the same should happen in the profile on the left

Independence of Irrelevant Alternatives

The social ranking (higher, lower, or indifferent) of two alternatives *a* and *b* depends only the relative rankings of *a* and *b* for each voter.

The social ranking (higher, lower, or indifferent) of two alternatives *a* and *b* depends only the relative rankings of *a* and *b* for each voter.

For all profiles **P** and **P**′:

If
$$\mathbf{P}_{i\{a,b\}} = \mathbf{P}'_{i\{a,b\}}$$
 for all $i \in V$, then $f(\mathbf{P})_{\{a,b\}} = f(\mathbf{P}')_{\{a,b\}}$.

where $P_{\{x,y\}}$ is the ranking on x and y defined as follows:

$$P_{\{x,y\}} = P \cap \{x,y\} \times \{x,y\}$$

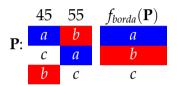
Independence of Irrelevant Alternatives

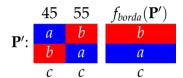
(IIA): For all profiles \mathbf{P}, \mathbf{P}' and $x, y \in X$, if $\mathbf{P}_{\{x,y\}} = \mathbf{P}'_{\{x,y\}}$, then $f(\mathbf{P})_{\{x,y\}} = f(\mathbf{P}')_{\{x,y\}}$.

Independence of Irrelevant Alternatives


```
(IIA): For all profiles \mathbf{P}, \mathbf{P}' and x, y \in X, if \mathbf{P}_{\{x,y\}} = \mathbf{P}'_{\{x,y\}}, then f(\mathbf{P})_{\{x,y\}} = f(\mathbf{P}')_{\{x,y\}}.
```

(IIA): For all profiles **P** and all $x, y \in X$, if **P**' is a profile in the domain of f such that $\mathbf{P}_{\{x,y\}} = \mathbf{P}'_{\{x,y\}}$, then


- ▶ If x defeats y according to f in P, then x defeats y according to f in P'
- ► If x does not defeat y according to f in P, then x does not defeat y according to f in P'



	45	55	$f_{borda}(\mathbf{P})$
P :	а	b	а
Γ.	C	а	b
	b	С	С

	45	55	$f_{borda}(\mathbf{P}')$
D/.	а	b	b
	b	а	а
	С	С	С

$${\bf P}_{|\{a,b\}}={\bf P}'_{|\{a,b\}}$$
, but

a beats b in **P** according to Borda, and b beats a in **P**' according to Borda.

	1	1	$f_{borda}(\mathbf{P})$
	а	С	a b c
P:	b	b	d
	С	а	
	d	d	

	1	1	$f_{borda}(\mathbf{P'})$
	а	С	a b
P ′:	b	b	С
	d	а	d
	С	d	

 $\mathbf{P}_{|\{b,c\}} = \mathbf{P}'_{|\{b,c\}}$, but b and c are tied in \mathbf{P} according to Borda, and b is ranked above c in \mathbf{P}' according to Borda.

Dictatorship

A voter $d \in V$ is a **dictator** for f if society strictly prefers a over b according to f whenever d strictly prefers a over b.

Dictatorship

A voter $d \in V$ is a **dictator** for f if society strictly prefers a over b according to f whenever d strictly prefers a over b.

There is a $d \in V$ such that for each profile **P**, if $a \cdot \mathbf{P}_d b$ then a is strictly preferred to b according to $f(\mathbf{P})$

Non-Dictatorship: There is no voter that is a dictator for f.

Summary

- ► Every social welfare functions that we have discussed satisfies universal domain and non-dictatorship.
- Most social welfare functions satisfies Pareto (except ranking by Plurality scores).
- ► Some social welfare functions satisfy Rationality: e.g., ranking by Plurality scores and ranking by Borda scores
- ► Some social welfare functions satisfy IIA: e.g., Majority ordering,

Summary

- ► Every social welfare functions that we have discussed satisfies universal domain and non-dictatorship.
- ► Most social welfare functions satisfies Pareto (except ranking by Plurality scores).
- ► Some social welfare functions satisfy Rationality: e.g., ranking by Plurality scores and ranking by Borda scores
- ► Some social welfare functions satisfy IIA: e.g., Majority ordering,

Are there any social welfare functions that satisfy all of Arrow's axioms?

Arrow's Theorem

Theorem (Arrow, 1951). Suppose that there are at least three candidates and finitely many voters. Any social welfare function that satisfies Universal Domain, Rationality, Pareto, Independence of Irrelevant Alternatives (IIA) is a Dictatorship.

▶ Alternative statement of the theorem: Suppose that there are at least three candidates and finitely many voters. There is no social welfare function that satisfies Universal Domain, Rationality, Pareto, Independence of Irrelevant Alternatives (IIA), and Non-Dictatorship.