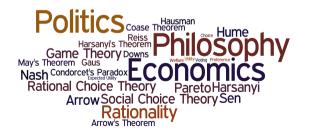
PHPE 400 Individual and Group Decision Making

Eric Pacuit University of Maryland pacuit.org



Kornhauser and Sager. Unpacking the court. Yale Law Journal, 1986.

P. Mongin. *The doctrinal paradox, the discursive dilemma, and logical aggregation theory*. Theory and Decision, 73(3), pp 315 - 355, 2012.

C. List and P. Pettit. *Aggregating sets of judgments: An impossibility result*. Economics and Philosophy 18, pp. 89 - 110, 2002.

Should we hire the candidate?

- ► Is the candidate good at research (*r*)?
- ► Is the candidate good at teaching (*t*)?
- We should hire the candidate if and only if the candidate is good at research and teaching. $(r \land t)$

	r	t	h
Voter 1			
Voter 2			
Voter 3			
Group			

	r	t	h
Voter 1	Yes	Yes	
Voter 2	Yes	No	
Voter 3	No	Yes	
Group	Yes	Yes	

	r	t	$(r \wedge t) \leftrightarrow h$	h
Voter 1	Yes	Yes		
Voter 2	Yes	No		
Voter 3	No	Yes		
Group	Yes	Yes	Yes	Yes

	r	t	$(r \wedge t) \leftrightarrow h$	h
Voter 1	Yes	Yes	Yes	Yes
Voter 2	Yes	No	Yes	No
Voter 3	No	Yes	Yes	No
Group				No

	r	t	$(r \wedge t) \leftrightarrow h$	h
Voter 1	Yes	Yes	Yes	Yes
Voter 2	Yes	No	Yes	No
Voter 3	No	Yes	Yes	No
Group	Yes	Yes	Yes	Y/N

What happens when there are more than 2 candidates?

- ✓ Group decision problems often exhibit a *combinatorial structure*. For example, voting on a number of yes/no issues in a referendum, or voting on different interconnected issues.
- As we have seen, there are many different reasonable voting methods that generalize Majority Rule for more than 2 candidates.

Is there a voting method that satisfies *all* principles of group decision making?

Principles of group decision making

• Anonymity: If voters swap their ballots, then the outcome is unaffected.

 Neutrality: If candidates are exchanged in every ranking, then the outcome changes accordingly.

• **Resoluteness**: Always elect a single winner.

Condorcet Triples and Resoluteness

n	п	n	n	п	n
а	b	С	а	С	b
b	С	а	С	b	а
С	а	b	b	а	С

Fact. In both profiles, any voting method satisfying anonymity and neutrality must select all candidates as winners

1	1	1
а	Ь	С
b	С	а
С	а	Ь

Consider $\mathbf{P} = (a \ b \ c, b \ c \ a, c \ a \ b)$ and suppose that $F(a \ b \ c, b \ c \ a, c \ a \ b) = \{a\}$

1. Swap *a* and *b* in everyone's rankings in the given profile. Then, by Neutrality:

$$F(\begin{array}{c|c} b & a \\ c, & a \\ c & b \\ c & b \\ c & b \\ a \\ c & b \\ c & b$$

1. Swap *a* and *b* in everyone's rankings in the given profile. Then, by Neutrality:

2. Swap *b* and *c* in everyone's rankings in the profile from step 1. Then, by Neutrality:

 $F(\cab, a\bbox{ } b\cab, a\bbox{ } c\cab, b\cab, a\bbox{ } c\cab, b\cab, a\box{ } c\cab, a\box{ } c\bx{ } c\$

1. Swap *a* and *b* in everyone's rankings in the given profile. Then, by Neutrality:

2. Swap *b* and *c* in everyone's rankings in the profile from step 1. Then, by Neutrality:

 $F(\c a b, a b c, b c a) = \{c\}$

3. By Anonymity, the original profile and the profile in step 3 must have the same winners:

$$F(abc, bca, cab) = F(cab, abc, bca)$$

1. Swap *a* and *b* in everyone's rankings in the given profile. Then, by Neutrality:

2. Swap *b* and *c* in everyone's rankings in the profile from step 1. Then, by Neutrality:

 $F(\c a b, a b c, b c a) = \{c\}$

3. By Anonymity, the original profile and the profile in step 3 must have the same winners:

$$F(a b c, b c a, c a b) = F(c a b, a b c, b c a)$$

4. 1 and 2 contradict 3 since $\Gamma(a, b, a, b, a, a, b) = \Gamma(a) - \Gamma$

 $F(a \ b \ c, b \ c \ a, c \ a \ b) = \{a\} \neq \{c\} = F(c \ a \ b, a \ b \ c, b \ c \ a).$

So, tie-breaking cannot be built-in to a voting method: there is no voting method that satisfies Anonymity, Neutrality and always elects a single winner.

Recall Weak Positive Responsiveness

► *F* satisfies **weak positive responsiveness** if for any profiles **P** and **P**', if

1. $a \in F(\mathbf{P})$ (*a* is a winner in **P** according to *F*) and

2. **P**' is obtained from **P** by one voter who ranked *a* uniquely last in **P** switching to ranking *a* uniquely first in **P**',

then $F(\mathbf{P}') = \{\mathbf{a}\}$ (*a* is the **unique** winner in \mathbf{P}' according to *F*).

Monotonicity

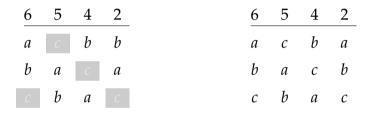
A candidate receiving more "support" shouldn't maker her worse off.

Monotonicity

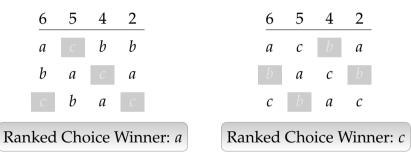
A candidate receiving more "support" shouldn't maker her worse off.

More-is-Less Paradox: If a candidate *c* is elected under a given a profile of rankings of the competing candidates, it is possible that, *ceteris paribus*, *c* may not be elected if some voter(s) raise *c* in their rankings.

P. Fishburn and S. Brams. Paradoxes of Preferential Voting. Mathematics Magazine (1983).



Ranked Choice Winner: *a*



Ranked Choice Winner: a

Ranked Choice Winner: c

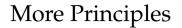
More on Monotonicity

Key idea: Unequivocal increase in support for a candidate should not result in that candidate going from being a winner to being a loser.

More on Monotonicity

Key idea: Unequivocal increase in support for a candidate should not result in that candidate going from being a winner to being a loser.

Monotonicity: if a candidate x is a winner given a preference profile **P**, and **P**' is obtained from **P** by one voter moving x up in their ranking, then x should still be a winner given **P**'.



Pareto/Unanimity: In any profile **P**, if every voter ranks *x* strictly above *y*, then *y* is not a winner.

Every voting method we have studied satisfies Pareto.

More Principles

Condorcet: In any profile **P**, if *x* is a Condorcet winner, then *x* is the unique winner.

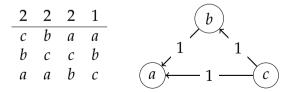
Condorcet Loser: In any profile **P**, if *x* is a Condorcet loser, then *x* is not a winner.

More Principles

Condorcet: In any profile **P**, if *x* is a Condorcet winner, then *x* is the unique winner.

Condorcet Loser: In any profile **P**, if *x* is a Condorcet loser, then *x* is not a winner.

Plurality violates both the Condorcet Winner and Condorcet Loser principles.



Plurality Winners: {*a*} Condorcet Winner: *c* Condorcet Loser: *a*

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Neutrality	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pareto	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Neutrality	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pareto	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Condorcet Winner	_	—	—	—	\checkmark	\checkmark	\checkmark
Condorcet Loser	—	\checkmark	\checkmark	\checkmark	\checkmark	_	\checkmark

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Neutrality	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pareto	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Condorcet Winner	—	—	—	—	\checkmark	\checkmark	\checkmark
Condorcet Loser	—	\checkmark	\checkmark	\checkmark	\checkmark	_	\checkmark
Monotonicity	\checkmark	\checkmark	—	_	\checkmark	\checkmark	\checkmark