PHPE 400 Individual and Group Decision Making

Eric Pacuit University of Maryland pacuit.org

A decision maker chooses rationally if her preferences are rational and there is nothing available that the decision maker prefers to what she chooses.

A decision maker chooses rationally if her preferences are rational and there is nothing available that the decision maker prefers to what she chooses.

Suppose that *X* is a set.

An **ordered pair** of elements from *X* is (a, b) where $a \in X$ is the first component and $b \in X$ is the second component.

Suppose that *X* is a set.

An **ordered pair** of elements from *X* is (a, b) where $a \in X$ is the first component and $b \in X$ is the second component.

 $X \times X$ is the set of all ordered pairs on X.

Suppose that *X* is a set.

An **ordered pair** of elements from *X* is (a, b) where $a \in X$ is the first component and $b \in X$ is the second component.

 $X \times X$ is the set of all ordered pairs on *X*.

A **relation** on *X* is a set of **ordered pairs** from *X*.

That is, if *R* is a relation on *X*, then $R \subseteq X \times X$.

Example: $X = \{a, b, c, d\}, R = \{(a, a), (b, a), (c, d), (a, c), (d, d)\}$

Example: $X = \{a, b, c, d\}, R = \{(a, a), (b, a), (c, d), (a, c), (d, d)\}$

b R a

Example: $X = \{a, b, c, d\}, R = \{(a, a), (b, a), (c, d), (a, c), (d, d)\}$

Example: $X = \{a, b, c, d\}, R = \{(a, a), (b, a), (c, d), (a, c), (d, d)\}$

A decision maker's strict preference over a set *X* is represented as a relation $P \subseteq X \times X$.

A decision maker's strict preference over a set *X* is represented as a relation $P \subseteq X \times X$.

If *P* represents the decision maker's strict preference and x P y (i.e., the decision maker strictly prefers x to y), then the decision maker would pay some non-zero amount money to trade y for x.

A decision maker's strict preference over a set *X* is represented as a relation $P \subseteq X \times X$.

If *P* represents the decision maker's strict preference and x P y (i.e., the decision maker strictly prefers x to y), then the decision maker would pay some non-zero amount money to trade y for x.

Can *any* relation on *X* represent a strict preference for a decision maker?

Symmetric/Asymmetric Relations

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Symmetric relation: for all $x, y \in X$, if x R y, then y R x

Asymmetric relation: for all $x, y \in X$, if x R y, then not-y R x

symmetric but not asymmetric

Symmetric/Asymmetric Relations

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Symmetric relation: for all $x, y \in X$, if x R y, then y R x

Asymmetric relation: for all $x, y \in X$, if x R y, then not-y R x

asymmetric but not symmetric

Symmetric/Asymmetric Relations

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Symmetric relation: for all $x, y \in X$, if x R y, then y R x

Asymmetric relation: for all $x, y \in X$, if x R y, then not-y R x

not symmetric and not asymmetric

A decision maker's strict preference over a set *X* is represented as a relation $P \subseteq X \times X$.

The underlying idea is that if *P* represents the decision maker's strict preference and x P y (i.e., the decision maker strictly prefers x to y), then the decision maker would pay some non-zero amount money to trade y for x.

Assumption: *P* is asymmetric (for all $x, y \in X$, if x P y, then it is not the case that y P x, written not-y P x).

Indifference/Incommensurable

Suppose that *P* is an asymmetric relation on *X* (interpreted as a decision maker's strict preference). Suppose that $x, y \in X$ with not-*x P y* and not-*y P x*.

Indifference/Incommensurable

Suppose that *P* is an asymmetric relation on *X* (interpreted as a decision maker's strict preference). Suppose that $x, y \in X$ with not-*x P y* and not-*y P x*.

There are two reasons why this might hold:

- 1. The decision maker is *indifferent* between *x* and *y*. In this case, we write *x I y*.
- 2. The decision maker *cannot compare x* and *y*. In this case, we write *x N y*.

Indifference/Incommensurable

Suppose that *P* is an asymmetric relation on *X* (interpreted as a decision maker's strict preference). Suppose that $x, y \in X$ with not-*x P y* and not-*y P x*.

There are two reasons why this might hold:

- 1. The decision maker is *indifferent* between *x* and *y*. In this case, we write *x I y*.
- 2. The decision maker *cannot compare x* and *y*. In this case, we write *x N y*.

What properties should *I* and *N* satisfy?

Reflexive Relations

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Reflexive relation: for all $x \in X$, x R x

Representing Preferences

Let *X* be a set of outcomes. A decision maker's *preference* over *X* is represented by *relations* on *X*:

• $P \subseteq X \times X$ where *a P b* means that the decision maker *strictly prefers a* to *b*.

Representing Preferences

Let *X* be a set of outcomes. A decision maker's *preference* over *X* is represented by *relations* on *X*:

- $P \subseteq X \times X$ where *a P b* means that the decision maker *strictly prefers a* to *b*.
- $I \subseteq X \times X$ where *a I b* means that the decision maker is *indifferent* between *a* and *b*.

Representing Preferences

Let *X* be a set of outcomes. A decision maker's *preference* over *X* is represented by *relations* on *X*:

- $P \subseteq X \times X$ where *a P b* means that the decision maker *strictly prefers a* to *b*.
- $I \subseteq X \times X$ where *a I b* means that the decision maker is *indifferent* between *a* and *b*.
- N ⊆ X × X where a N b means that the decision maker *cannot compare a* and b.

Preferences - Minimal Constraints

A decision maker's preferences on *X* is represented by three relations $P \subseteq X \times X$, $I \subseteq X \times X$ and $N \subseteq X \times X$ satisfying the following minimal constraints:

- 1. For all $x, y \in X$, exactly one of x P y, y P x, x I y and x N y is true.
- 2. *P* is asymmetric
- 3. *I* is reflexive and symmetric.
- 4. *N* is symmetric.

Rational Preferences

An individual's preferences are **rational** when they satisfy two additional constraints:

- 1. transitivity
- 2. completeness

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

Suppose that *X* is a set and $R \subseteq X \times X$ is a relation.

