PHPE 400
 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Politics case maximi
Rease theorem chice Hume "nimot ene Philosophy Game The

Collective decision making

Which candidate should be chosen?

 Nash Condorcet's Paradox ECO Con ParetoHarsanyi
Rational Choice Theory
ArrowSocial Choice TheorySen Arrow Social Choice
Rationality
arrows theocrem

$$
\begin{array}{ccc}
40 & 35 & 25 \\
\hline t & r & k \\
k & k & r \\
r & t & t
\end{array}
$$

Which candidate should be chosen?

 wavs neme thern Economics Nash Consorcets parasooxRational Choice Theory ParetoHarsany Arrowsocial Cholice

40	35	25
t	r	k
k	k	r
r	t	t

- No candidate is the majority winner. No candidate has a majority of 1st place votes.

Which candidate should be chosen?

Politicscasan fumi fum Mas sime theor ame Nash Consorcets Paradox
Rational Choice Theory ParetoHarsanyi

40	35	25
t	r	k
k	k	r
r	t	t

- No candidate is the majority winner. No candidate has a majority of 1st place votes.
- The Plurality winner is t

The plurality is the candidate that is ranked first by the most voters.

Which candidate should be chosen?

40	35	25
t	r	k
k	k	r
r	t	t

- No candidate is the majority winner. No candidate has a majority of 1st place votes.
- The Plurality winner is t

The plurality is the candidate that is ranked first by the most voters.

- The Instant Runoff winner is r

After k is removed since it is ranked first by the fewest number of voters, candidate r is the majority winner.

What about candidate k ?

Margin

Suppose that \mathbf{P} is an election (a record of the ballots submitted by the voters) and a and b are two candidates in \mathbf{P}.

The margin of a over b in \mathbf{P}, denoted $\operatorname{Margin}_{\mathbf{P}}(a, b)$, is the number of voters that rank a above b in \mathbf{P} minus the number of voters that rank b above a in \mathbf{P}.

$$
\begin{aligned}
\operatorname{Margin}_{\mathbf{P}}(t, k) & =40-60=-20 \\
\operatorname{Margin}_{\mathbf{P}}(k, t) & =60-40=20 \\
\operatorname{Margin}_{\mathbf{P}}(k, r) & =30 \\
\operatorname{Margin}_{\mathbf{P}}(r, k) & =-30 \\
\operatorname{Margin}_{\mathbf{P}}(t, r) & =-20 \\
\operatorname{Margin}_{\mathbf{P}}(r, t) & =20
\end{aligned}
$$

Margin

 ArrowSocial Choice TheorySen

Suppose that \mathbf{P} is an election (a record of the ballots submitted by the voters) and a and b are two candidates in \mathbf{P}.

The margin of a over b in \mathbf{P}, denoted $\operatorname{Margin}_{\mathbf{P}}(a, b)$, is the number of voters that rank a above b in \mathbf{P} minus the number of voters that rank b above a in \mathbf{P}.

$$
\begin{aligned}
& \operatorname{Margin}_{\mathbf{P}}(t, k)=20 \\
& \operatorname{Margin}_{\mathbf{P}}(k, t)=20 \\
& \operatorname{Margin}_{\mathbf{p}}(k, r)=65-35=30 \\
& \operatorname{Margin}_{\mathrm{P}}(r, k)=35-65=-30 \\
& \operatorname{Margin}_{\mathbf{P}}(t, r)=-20 \\
& \operatorname{Margin}_{\mathbf{P}}(r, t)=20
\end{aligned}
$$

Margin

Suppose that \mathbf{P} is an election (a record of the ballots submitted by the voters) and a and b are two candidates in \mathbf{P}.

The margin of a over b in \mathbf{P}, denoted $\operatorname{Margin}_{\mathbf{P}}(a, b)$, is the number of voters that rank a above b in \mathbf{P} minus the number of voters that rank b above a in \mathbf{P}.

$$
\begin{aligned}
& \operatorname{Margin}_{\mathbf{P}}(t, k)=20 \\
& \operatorname{Margin}_{\mathbf{P}}(k, t)=20 \\
& \operatorname{Margin}_{\mathbf{P}}(k, r)=30 \\
& \operatorname{Margin} \mathbf{P}^{\mathbf{P}}(r, k)=-30 \\
& \operatorname{Margin}_{\mathbf{P}}(t, r)
\end{aligned}=40-60=-20
$$

Majority Graph

Suppose that \mathbf{P} is an election (a record of the ballots submitted by the voters) and a and b are two candidates in \mathbf{P}.
We say that a is majority preferred to b in \mathbf{P} when more voters rank a above b than rank b above a.

Alternatively, a is majority preferred to b when $\operatorname{Margin}_{\mathbf{P}}(a, b)>0$.

$$
\begin{aligned}
& \operatorname{Margin}_{\mathbf{P}}(t, k)=-20 \\
& \begin{array}{ccc}
40 & 35 & 25 \\
\hline t & r & k
\end{array} \\
& k \quad k \quad \operatorname{Margin}_{\mathbf{P}}(r, k)=-30 \\
& r t \quad t \quad \operatorname{Margin}_{\mathbf{P}}(t, r)=-20 \\
& \operatorname{Margin}_{\mathbf{P}}(r, t)=20 \\
& \text { - } k \text { is majority preferred to } t \\
& \text { - } k \text { is majority preferred to } r \\
& \text { - } r \text { is majority preferred to } t
\end{aligned}
$$

Majority Graph

Suppose that \mathbf{P} is an election (a record of the ballots submitted by the voters) and a and b are two candidates in \mathbf{P}.
A majority graph is a diagram displaying all the candidates in the election with an arrow from candidate a to candidate b when a is majority preferred to b (i.e., $\operatorname{Margin}_{\mathbf{P}}(a, b)>0$).

$$
\begin{aligned}
& \operatorname{Margin}_{\mathbf{p}}(t, k)=-20 \\
& \begin{array}{ccc}
40 & 35 & 25
\end{array} \begin{array}{cc}
\operatorname{Margin}_{\mathbf{P}}(k, t) & =20 \\
\hline t & r \\
\operatorname{Margin}_{\mathbf{P}}(k, r) & =30
\end{array} \\
& k \quad \begin{aligned}
& \operatorname{Margin}_{\mathbf{P}}(r, k) \\
= & -30
\end{aligned} \\
& r t \quad t \quad \operatorname{Margin}_{\mathbf{P}}(t, r)=-20 \\
& \operatorname{Margin}_{\mathbf{P}}(r, t)=20
\end{aligned}
$$

Margin Graph

Suppose that \mathbf{P} is an election (a record of the ballots submitted by the voters) and a and b are two candidates in \mathbf{P}.

A margin graph is the majority graph in which all the arrows are labeled with the margins. That is, it is a diagram displaying all the candidates in the election with an arrow from candidate a to candidate b when a is majority preferred to b, and the arrow has the label $\operatorname{Margin}_{\mathbf{P}}(a, b)$.

$$
\begin{aligned}
& \operatorname{Margin}_{\mathbf{P}}(t, k)=-20 \\
& \begin{array}{ccc}
40 & 35 & 25
\end{array} \begin{array}{c}
\operatorname{Margin}_{\mathbf{P}}(k, t)=20 \\
\hline t
\end{array} r^{\operatorname{Margin}} \mathbf{P}(k, r)=30 \\
& k \quad k \quad \operatorname{Margin}_{\mathbf{P}}(r, k)=-30 \\
& r t \quad t \quad \operatorname{Margin}_{\mathbf{P}}(t, r)=-20 \\
& \operatorname{Margin}_{\mathbf{p}}(r, t)=20
\end{aligned}
$$

Which candidate should be chosen?

 Mass hiame cemseryomis Nashtonaxacre choies Theory paretotarsany $\underset{\text { Rrrows theorem }}{\text { Ratity }}$| 40 | 35 | 25 |
| :---: | :---: | :---: |
| t | r | k |
| k | k | r |
| r | t | t |

Plurality winner t
Instant Runoff winner r
Condorcet winner k
Condorcet loser t

Suppose that \mathbf{P} is an election (a record of the ballots submitted by the voters).

Suppose that \mathbf{P} is an election (a record of the ballots submitted by the voters).
When more voters rank candidate A above candidate B than the other way around, the voters favor A over B in \mathbf{P}.

In most elections, the voting public favors one candidate over all others. This candidate is called the Condorcet winner.

Suppose that \mathbf{P} is an election (a record of the ballots submitted by the voters).
When more voters rank candidate A above candidate B than the other way around, the voters favor A over B in \mathbf{P}.

In most elections, the voting public favors one candidate over all others. This candidate is called the Condorcet winner.

- A candidate a is the Condorcet winner in \mathbf{P} when a is majority preferred to every other candidate in \mathbf{P}.

Alternatively, For all candidates b other than $a, \operatorname{Margin}_{\mathbf{P}}(a, b)>0$.
Alternatively, For all candidates b other than a, there is an arrow from a to b in the majority (margin) graph for \mathbf{P}

