PHPE 400 Individual and Group Decision Making

Eric Pacuit University of Maryland pacuit.org

Collective decision making

 $\begin{array}{ccccc}
40 & 35 & 25 \\
t & r & k \\
k & k & r \\
r & t & t \\
\end{array}$

No candidate is the majority winner.
 No candidate has a majority of 1st place votes.

- No candidate is the majority winner.
 No candidate has a majority of 1st place votes.
- The Plurality winner is t The plurality is the candidate that is ranked first by the most voters.

- No candidate is the majority winner.
 No candidate has a majority of 1st place votes.
- The **Plurality** winner is *t* The plurality is the candidate that is ranked first by the most voters.
- The Instant Runoff winner is r After k is removed since it is ranked first by the fewest number of voters, candidate r is the majority winner.

What about candidate *k*?

Margin

Suppose that **P** is an election (a record of the ballots submitted by the voters) and *a* and *b* are two candidates in **P**.

The **margin of** *a* **over** *b* in **P**, denoted $Margin_{\mathbf{P}}(a, b)$, is the number of voters that rank *a* above *b* in **P** minus the number of voters that rank *b* above *a* in **P**.

$Margin_{\mathbf{P}}(t,k)$		40 - 60 = -20
$Margin_{\mathbf{P}}(k,t)$	=	60 - 40 = 20
$Margin_{\mathbf{P}}(k,r)$	=	30
$Margin_{\mathbf{P}}(r,k)$	=	-30
$Margin_{\mathbf{P}}(t,r)$	=	-20
$Margin_{\mathbf{P}}(r,t)$	=	20

Margin

Suppose that **P** is an election (a record of the ballots submitted by the voters) and *a* and *b* are two candidates in **P**.

The **margin of** *a* **over** *b* in **P**, denoted $Margin_{\mathbf{P}}(a, b)$, is the number of voters that rank *a* above *b* in **P** minus the number of voters that rank *b* above *a* in **P**.

$Margin_{\mathbf{P}}(t,k)$	=	20
$Margin_{\mathbf{P}}(k,t)$	=	20
$Margin_{\mathbf{P}}(k,r)$	=	65 - 35 = 30
$Margin_{\mathbf{P}}(r,k)$		35 - 65 = -30
$Margin_{\mathbf{P}}(t,r)$	=	-20
$Margin_{\mathbf{P}}(r,t)$	=	20

Margin

Suppose that **P** is an election (a record of the ballots submitted by the voters) and *a* and *b* are two candidates in **P**.

The **margin of** *a* **over** *b* in **P**, denoted $Margin_{\mathbf{P}}(a, b)$, is the number of voters that rank *a* above *b* in **P** minus the number of voters that rank *b* above *a* in **P**.

$Margin_{\mathbf{P}}(t,k)$	=	20
$Margin_{\mathbf{P}}(k,t)$	=	20
$Margin_{\mathbf{P}}(k,r)$	=	30
$Margin_{\mathbf{P}}(r,k)$	=	-30
$Margin_{\mathbf{P}}(t,r)$		40 - 60 = -20
$Margin_{\mathbf{P}}(r,t)$	=	60 - 40 = 20

Majority Graph

Suppose that **P** is an election (a record of the ballots submitted by the voters) and *a* and *b* are two candidates in **P**.

We say that *a* is **majority preferred** to *b* in **P** when more voters rank *a* above *b* than rank *b* above *a*.

Alternatively, *a* is majority preferred to *b* when $Margin_{\mathbf{P}}(a, b) > 0$.

			$Margin_{\mathbf{P}}(t,k)$	=	-20
40	35	25	$Margin_{\mathbf{P}}(k,t)$	=	20
t	r	k	$Margin_{\mathbf{P}}(k,r)$	=	30
k	k	r	$Margin_{\mathbf{P}}(r,k)$	=	-30
r	t	t	$Margin_{\mathbf{P}}(t,r)$	=	-20
			$Margin_{\mathbf{P}}(r,t)$	=	20

- k is majority preferred to t
- k is majority preferred to r
- r is majority preferred to t

Majority Graph

Suppose that **P** is an election (a record of the ballots submitted by the voters) and *a* and *b* are two candidates in **P**.

A **majority graph** is a diagram displaying all the candidates in the election with an arrow from candidate *a* to candidate *b* when *a* is majority preferred to *b* (i.e., $Margin_{\mathbf{P}}(a, b) > 0$).

			$Margin_{\mathbf{P}}(t,k)$	=	-20	L / 1.
40	35	25	$Margin_{\mathbf{P}}(k,t)$	=	20	$t \leftarrow K$
t	r	k	$Margin_{\mathbf{P}}(k,r)$	=	30	
k	k	r	$Margin_{\mathbf{P}}(r,k)$	=	-30	
r	t	t	$Margin_{\mathbf{P}}(t,r)$	=	-20	\setminus \angle
			$Margin_{\mathbf{P}}(r,t)$	=	20	r

Margin Graph

Suppose that **P** is an election (a record of the ballots submitted by the voters) and *a* and *b* are two candidates in **P**.

A **margin graph** is the majority graph in which all the arrows are labeled with the margins. That is, it is a diagram displaying all the candidates in the election with an arrow from candidate *a* to candidate *b* when *a* is majority preferred to *b*, and the arrow has the label $Margin_{\mathbf{P}}(a, b)$.

			$Margin_{\mathbf{P}}(t,k)$	=	-20	
40	35	25	$Margin_{\mathbf{P}}(k,t)$	=	20	$t \underset{\kappa}{\longleftarrow} 20 \underset{\kappa}{\longrightarrow} k$
t	r	k	$Margin_{\mathbf{P}}(k,r)$	=	30	
k	k	r	$Margin_{\mathbf{P}}(r,k)$	=	-30	20 30
r	t	t	$Margin_{\mathbf{P}}(t,r)$	=	-20	\setminus \checkmark
			$Margin_{\mathbf{P}}(r,t)$	=	20	r

- Plurality winner *t*
- Instant Runoff winner r
 - Condorcet winner k
 - Condorcet loser t

Suppose that **P** is an election (a record of the ballots submitted by the voters).

Suppose that **P** is an election (a record of the ballots submitted by the voters).

When more voters rank candidate *A* above candidate *B* than the other way around, the voters *favor A* over *B* in **P**.

In most elections, the voting public favors one candidate over all others. This candidate is called the *Condorcet winner*. Suppose that **P** is an election (a record of the ballots submitted by the voters).

When more voters rank candidate *A* above candidate *B* than the other way around, the voters *favor A* over *B* in **P**.

In most elections, the voting public favors one candidate over all others. This candidate is called the *Condorcet winner*.

 A candidate *a* is the Condorcet winner in P when *a* is majority preferred to every other candidate in P.

Alternatively, For all candidates *b* other than *a*, $Margin_{\mathbf{P}}(a, b) > 0$. Alternatively, For all candidates *b* other than *a*, there is an arrow from *a* to *b* in the majority (margin) graph for **P**