PHPE 400
 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Politics case maximi
Rease theorem che "nimotwee Philosophy Game The

Nash Equilibria

 ArrowSocial Choice TheorySen $\underset{\text { arrows }}{\text { Rationalitem }}$

- Some games may not have any pure strategy Nash equilibrium.
- Nash's Theorem: In any finite game, there is a mixed strategy Nash equilibrium.
- There may be more than one Nash equilibria.
- Components of Nash equilibria are not interchangeable: If \mathbf{s} and \mathbf{t} are Nash equilibria in a 2-player game, then ($\mathbf{s}_{1}, \mathbf{t}_{2}$) may not be a Nash equilibrium.

Why should the players play their component of a Nash equilibrium?

When there are multiple Nash equilibria, how do the players decided which Nash equilibrium to play?

Why play Nash equilibrium?

Self-Enforcing Agreements: Nash equilibria are recommended by being the only strategy combinations on which the players could make self-enforcing agreements, i.e., agreements that each has reason to respect, even without external enforcement mechanisms.
M. Risse. What is rational about Nash equilibria?. Synthese, 124:3, pgs. 361-384, 2000.

Stag-Hunt

Politics.ewne

ArrowSocial Choice
Col

Stag-Hunt

 Mass Game cheory Nash conarects amase theory peretoblarsny ArrowSocial ChoiceRationality

(S, S) and (H, H) are Nash equilibria

Stag-Hunt

 Mas semen wis ArrowSocial Choice
Rationality

(S, S) is Pareto-superior, but (H, H) is less risky

Col

	L	C	R
T	4,6	5, 4	0, 0
3	5,7	4,8	0,0
B	0,0	0,0	1,1

(B, R) is a Nash equilibrium, but it is not self-enforcing

$$
\begin{aligned}
& \text { Col }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Col } \\
& L \quad R
\end{aligned}
$$

(D, R) is self-enforcing, but not a Nash equilibrium

Self-Enforcing Agreements: Nash equilibria are recommended by being the only strategy combinations on which the players could make self-enforcing agreements, i.e., agreements that each has reason to respect, even without external enforcement mechanisms.

- Not all Nash equilibria are "equally" self-enforcing
- There are Nash equilibria that are not self-enforcing
- There are self-enforcing outcomes that are not Nash equilibria

Is a Nash equilibrium guaranteed by players that are rational rationality and have common knowledge of each others' rationality?

- Strategies that are not a Nash equilibrium may be rationalizable
- Sometimes considerations of riskiness trump the Nash equilibrium

Col

	L	C	R
T	3,2	0, 0	2,3
$3^{3} M$	0, 0	1,1	0,0
B	2,3	0, 0	3,2

(M, C) is the unique Nash equilibrium

T, L, B and R are rationalizable

T, L, B and R are rationalizable

Row plays B because she thought Col will play R

Col plays L because she thought Row will play B

Col was correct, but Row was wrong

Col

	L	C	R	X
T	3,2	0, 0	2,3	0, -5
${ }_{2}^{3} M$	0, 0	1,1	0,0	200,-5
B	2,3	0, 0	3,2	1,-

Not every strategy is rationalizable: Row can't play M because she thinks Col will play X

An action A strictly dominates another action B for player i when i 's utility is strictly better choosing A than choosing B no matter what actions are chosen by the other players.

Col

Since R is strictly dominated by L, Column will not play R. Then, the best response for Row is U.

