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The Guessing Game

Guess a number between 1 & 100.
The closest to 2/3 of the average wins.
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1. You and your friend write down an integer between 2 and 100 (without
discussing).

2. If both of you write down the same number, then both will receive that
amount in dollars from the airline in compensation.

3. If the numbers are different, then the airline assumes that the smaller
number is the actual price of the luggage.

4. The person that wrote the smaller number will receive that amount plus
$2 (as a reward), and the person that wrote the larger number will receive
the smaller number minus $2 (as a punishment).

Suppose that you are randomly paired with another person from class. What
number would you write down?

4/24



PoliticScos e
(o] mt:sca%m,ﬁl 5%8phy
ParetoHarsanyl

|
n: heor)
ArrowSoc\aI Choice TheorySen
Ratlonal y

From Decisions to Games

What makes the previous decision problems different from standard decision
problems?
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What makes the previous decision problems different from standard decision
problems?

“[T]he fundamental insight of game theory [is] that a rational player must
take into account that the players reason about each other in deciding how to

play.”

R. Aumann and J. Dreze. Rational Expectations in Games. American Economic Review, 98, pp.
72-86, 2008.
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a group of self-interested agents (players) involved in some
interdependent decision problem
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Ann

a group of self-interested agents (players) involved in some
interdependent decision problem

pictured above: Bach/Stravinsky Game (also called Battle of the Sexes)
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Just Enough Game Theory

A game is a mathematical model of a strategic interaction that includes
» the group of players in the game
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Just Enough Game Theory

A game is a mathematical model of a strategic interaction that includes
» the group of players in the game
» the actions the players can take
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» the group of players in the game
» the actions the players can take
» the players’ interests (i.e., preferences/utilities),
>

the “structure” of the decision problem (what information do the players
have?, what order do they act in?, how many times do they repeat their
interaction?, etc.)
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A game is a mathematical model of a strategic interaction that includes
» the group of players in the game
» the actions the players can take
» the players’ interests (i.e., preferences/utilities),
>

the “structure” of the decision problem (what information do the players
have?, what order do they act in?, how many times do they repeat their
interaction?, etc.)

It does not specify the actions that the players do take.
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» In simultaneous-move games all players select an action at the same
time, without knowing what the others will do (though they can
certainly reason about what the other players should be expected to do).
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Strategic Games

A strategic game is a tuple (N, (Ai)ien, (4i)ien) Where

» N is a finite set of players

» for eachi € N, A; is a nonempty set of actions
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Strategic Games

A strategic game is a tuple (N, (Ai)ien, (4i)ien) Where

» N is a finite set of players
» for eachi € N, A; is a nonempty set of actions
» for eachi € N, u; is a utility function for player i on A = Il;cNA;

ui:A—R

10/ 24



Strategic Games: Example

Column

LL R
Uu|(2,1|0,0
D[0,0/|1,2

Row

» N = {Row, Column}

> ARow = {ua D}/ AColumn - {L: R}

» URow : ARow X AColumn — {07 17 2}/ UColumn - ARow X AColumn — {Oa 17 2} with
uRow(u7 L) = UColumn (D7 R) - 2/ uRow(Da R) = Z/‘Column(lla L) = 1/
and uRow(Da L) = UColumn <D7 L) = uRow(uu R) = uColumn<ua R) = 0.
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Column
L R
.U[2,1]0,0
“D|0,0]1,2

A strategy profile is a list of strategies, one for each player, that represents the
outcome of the game.

The 4 possible strategy profiles in the above game are
{(U, L), (D, L), (U, R), (D, R)}
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A strategy profile s Pareto dominates a strategy profile t provided every
player strictly prefers the outcome given s than the outcome given t.

For example, when there are two players, a strategy profile (A, B) Pareto
dominates another strategy profile (X, Y) when

Ml(A,B) > I/ll(X, Y) and MQ(A, B) > Mz(X, Y)

A strategy profile s is Pareto optimal if s is not Pareto dominated by any
other strategy profile.
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Bob
L R

~u/ 1,100
D 00|11

An

The strategy profile (U, L) Pareto dominates both (D, L) and (U, R).
But (U, L) does not Pareto dominate (D, R).
(U,L) and (D, R) are the Pareto optimal outcomes.
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Bob
L R

U 44103
D 3,0|1,1

An

The strategy profile (U, L) Pareto dominates both (D, L) and (U, R).
But (U, L) Pareto dominates (D, R).

(U, L) is the unique Pareto optimal outcome.
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All strategy profiles are Pareto optimal.

13/24



1 2 Hume y
o
. oS LA
Solution Concept g onomics
Rational Choice Theory — ParetoHarsanyl
ArrowSocial Choice TheorySen
Rationality

mmmmmmmmmm

A solution concept is a systematic description of the outcomes (i.e., the
strategy profiles) that may emerge in a family of games.

This is the starting point for most of game theory and includes many variants:

Nash equilibrium, backwards induction, or iterated dominance of various
kinds.

These are usually thought of as the embodiment of “rational behavior” in
some way and used to analyze game situations.
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For a player i and a strategy s of the opponents, BR;(s) is i’s best response to
s: The strategy that maximizes i’s utility assuming the other players follow
strategy s.

Best Response
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For a player i and a strategy s of the opponents, BR;(s) is i’s best response to
s: The strategy that maximizes i’s utility assuming the other players follow

strategy s.
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N ={rc} A ={UD} A.={LR}
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Nash Equilibrium

A strategy profile is a Nash equilibrium if every player’s strategy is a best
response to the other player’s strategies.
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Example

L R
u 21/0,0
D [00]12

N={rc} A ={UD} A ={LR}
BR,(L) = {U} BR,(R) = {D}
BR.(U) = {L} BR:(D) = {R}

(U, L) is a Nash Equilibrium (D, R) is a Nash Equilibrium
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(U,L) and (D, R) are Nash equilibria.
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Matching Pennies
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T-1,1]1,-1

Row

What are the players’ best responses?
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There are no pure strategy equilibrium.
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Mixed Strategies

Col
H T

H|1-1|-1,1
T-1,11,-1

Row

A mixed strategy is a probability distribution over the set of pure strategies.
For instance:

> H:1/2,T:1/2]

» [H:1/3,T:2/3]

> ..
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H\ 1,1
T|-1,1

1,-1

Consider the mixed strategy ([H : 1/2,T:1/2],[H : 1/2,T : 1/2]).
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The mixed strategy ([H : 1/2,T : 1/2],[H : 1/2,T : 1/2]) is the only
mixed-strategy Nash equilibrium.
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