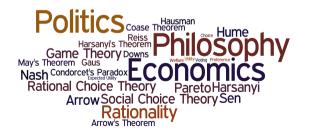
PHPE 400 Individual and Group Decision Making

Eric Pacuit University of Maryland pacuit.org



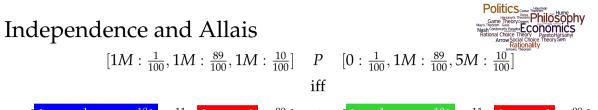
		Red (1)	White (89)	Blue (10)
S_1	Α	1M	1M	1M
	В	0	1M	5M

		Red (1)	White (89)	Blue (10)
S_2	С	1M	0	1M
	D	0	0	5M

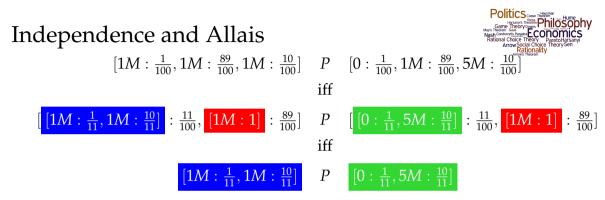
		Red (1)	White (89)	Blue (10)
S_1	Α	1M	1M	1 <i>M</i>
	В	0	1M	5M
S_2	С	1M	0	1M
	D	0	0	5M

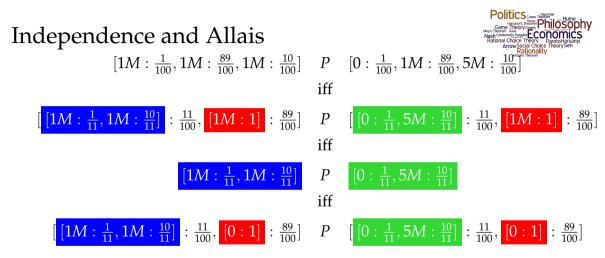
Independence and Allais

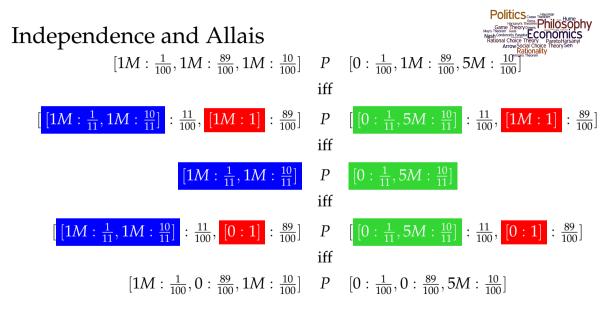
 $[1M:rac{1}{100},1M:rac{89}{100},1M:rac{10}{100}]$ P $[0:rac{1}{100},1M:rac{89}{100},5M:rac{10}{100}]$

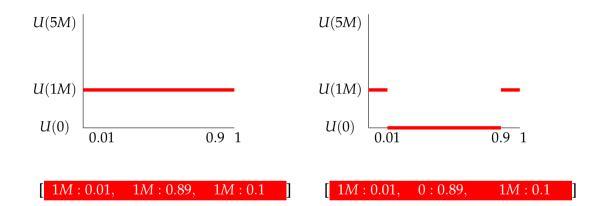


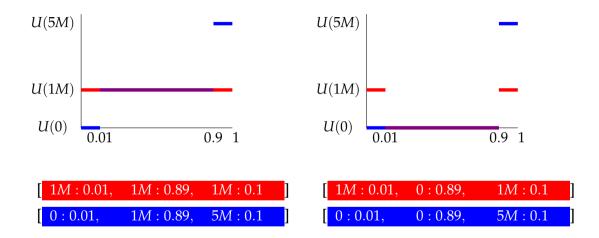
$$\begin{bmatrix} 1M : \frac{1}{11}, 1M : \frac{10}{11} \end{bmatrix} : \frac{11}{100}, \begin{bmatrix} 1M : 1 \end{bmatrix} : \frac{89}{100} \end{bmatrix} \quad P \quad \begin{bmatrix} 0 : \frac{1}{11}, 5M : \frac{10}{11} \end{bmatrix} : \frac{11}{100}, \begin{bmatrix} 1M : 1 \end{bmatrix} : \frac{89}{100} \end{bmatrix}$$

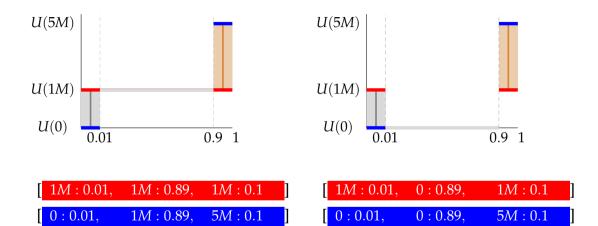












	Red (1)	White (89)	Blue (10)
S_1 A	1M	1M	1M
В	0	1M	5M
S_2 C	1M	0	1M
D	0	0	5M

A P B if and only if C P D

We should **not** conclude either

We should **not** conclude either

(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or

We should **not** conclude either

(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or

(b) those who choose A in S_1 and D is S_2 are irrational.

We should **not** conclude either

(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or

(b) those who choose A in S_1 and D is S_2 are irrational.

Rather, people's utility functions (*their rankings over outcomes*) are often far more complicated than the monetary bets would indicate....

L. Buchak. Risk and Rationality. Oxford University Press, 2013.

Ellsberg Paradox

	30	6	00
Lotteries	Blue	Yellow	Green
L_1	1M	0	0
L_2	0	1M	0

Ellsberg Paradox

	_30	6)
Lotteries	Blue	Yellow	Green
L_3	1M	0	1M
L_4	0	1M	1M

Ellsberg Paradox

	30	6	00
Lotteries	Blue	Yellow	Green
L_1	1M	0	0
L_2	0	1M	0
L_3	1M	0	1M
L_4	0	1M	1M

$L_1 R L_2$ if and only if $L_3 R L_4$

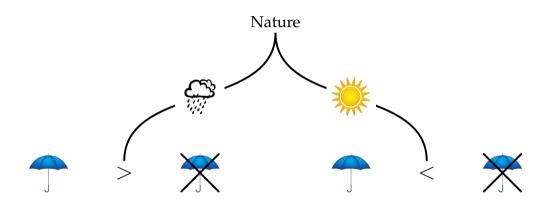
Let *r* be any integer between 30 and 60 (i.e., $30 \le r \le 60$) and q = 90 - 30 - r $[1M:\frac{30}{90}, 0:\frac{r}{90}, 0:\frac{q}{90}] \quad P \quad [0:\frac{30}{90}, 1M:\frac{r}{90}, 0:\frac{q}{90}]$ iff $\left[\frac{[1M:\frac{30}{30+r}, 0:\frac{r}{30+r}]}{[0,1]}:\frac{30+r}{90}, 0:\frac{q}{90} \right] \quad P \quad \left[\frac{[0:\frac{30}{30+r}, 1M:\frac{r}{30+r}]}{[0,1]}:\frac{30+r}{90}, 0:\frac{q}{90} \right]$ iff $[0:rac{30}{30+r}, 1M:rac{r}{30+r}]$ $[1M:\frac{30}{30+r}, 0:\frac{r}{30+r}]$ P iff $\left[\left[1M : \frac{30}{30+r}, 0 : \frac{r}{30+r} \right] : \frac{30+r}{90}, 1M : \frac{q}{90} \right] P$ $\left[\left[0 : \frac{30}{30+r}, 1M : \frac{r}{30+r} \right] : \frac{30+r}{90}, 1M : \frac{q}{90} \right]$ iff $[1M:\frac{30}{90}, 0:\frac{r}{90}, 1M:\frac{q}{90}] \quad P \quad [0:\frac{30}{90}, 1M:\frac{r}{90}, 1M:\frac{q}{90}]$

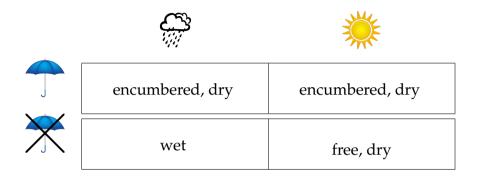
Ambiguity Aversion

I. Gilboa and M. Marinacci. *Ambiguity and the Bayesian Paradigm*. Advances in Economics and Econometrics: Theory and Applications, Tenth World Congress of the Econometric Society. D. Acemoglu, M. Arellano, and E. Dekel (Eds.). New York: Cambridge University Press, 2013.

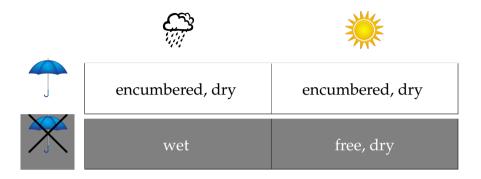
Flipping a fair coin vs. flipping a coin of unknown bias

Decision problems

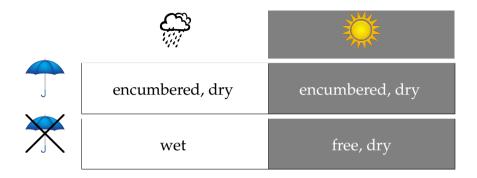


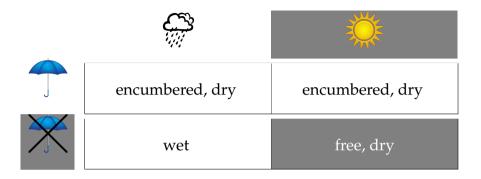


		*
	encumbered, dry	encumbered, dry
\mathbf{X}	wet	free, dry



		*
Ţ	encumbered, dry	encumbered, dry
\mathbf{X}	wet	free, dry





Take umbrella (A)endLeave umbrella (B)

Rain (s_1)	No rain (s_2)
encumbered, dry (<i>o</i> ₁)	encumbered, dry (o_1)
free, wet (o_2)	free, dry (o_3)

 $A(s_1) = A(s_2) = o_1$ $B(s_1) = o_2, B(s_2) = o_3$

	Rain (s_1)	No rain (s_2)
Take umbrella (A)	encumbered, dry (<i>o</i> ₁)	encumbered, dry (o_1)
Leave umbrella (B)	free, wet (o_2)	free, dry (o_3)

Suppose that $P(s_1) = 0.6$ and $P(s_2) = 0.4$ (the decision maker believes that there is a 60% chance that it will rain).

	Rain (s_1)	No rain (s_2)
Take umbrella (A)	encumbered, dry (<i>o</i> ₁)	encumbered, dry (o_1)
Leave umbrella (B)	free, wet (o_2)	free, dry (o_3)

Suppose that $P(s_1) = 0.6$ and $P(s_2) = 0.4$ (the decision maker believes that there is a 60% chance that it will rain).

Suppose that the decision maker's utility for the outcomes is: $u(o_1) = 5$, $u(o_2) = 0$ and $u(o_3) = 10$.

Rain
$$(s_1)$$
No rain (s_2) $P(s_1) = 0.6$ $P(s_2) = 0.4$ Take umbrella (A)encumbered, dry (o_1) encumbered, dry (o_1) $u(o_1) = 5$ $u(o_1) = 5$ Leave umbrella (B)free, wet (o_2) free, dry (o_3) $u(o_2) = 0$ $u(o_3) = 10$

$$EU(A) = 0.6 * 5 + 0.4 * 5 = 5 > EU(B) = 0.6 * 0 + 0.4 * 10 = 4$$

Rain
$$(s_1)$$
No rain (s_2) $P(s_1) = 0.6$ $P(s_2) = 0.4$ Take umbrella (A) encumbered, dry (o_1) encumbered, dry (o_1) $u'(o_1) = 4$ $u'(o_1) = 4$ Leave umbrella (B) free, wet (o_2) free, dry (o_3) $u'(o_2) = 2$ $u'(o_3) = 8$

$$EU(A) = 0.6 * 4 + 0.4 * 4 = 4 < EU(B) = 0.6 * 2 + 0.4 * 8 = 1.2 + 3.2 = 4.4$$

	$\begin{array}{l} \text{Rain} (s_1) \\ P(s_1) = 0.6 \end{array}$	No rain (s_2) $P(s_2) = 0.4$
Take umbrella (A)	encumbered, dry (<i>o</i> ₁)	encumbered, dry (o_1)
Leave umbrella (B)	free, wet (o_2)	free, dry (o ₃)

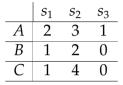
$$u(o_3) = 10 > u(o_1) = 5 > u(o_2) = 0$$

 $EU(A) = 0.6 * 5 + 0.4 * 5 = 5 > EU(B) = 0.6 * 0 + 0.4 * 10 = 4$

$$u'(o_3) = 8 > u'(o_1) = 4 > u'(o_2) = 2$$

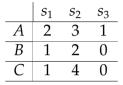
 $EU(A) = 0.6 * 4 + 0.4 * 4 = 4 < EU(B) = 0.6 * 2 + 0.4 * 8 = 1.2 + 3.2 = 4.4$

For all acts *A* and *B* and utility functions *u*, if EU(A, u) > EU(B, u) and *u'* is a linear transformation of *u* (i.e., $u'(\cdot) = au(\cdot) + b$ for some $a, b \in \mathbb{R}$), then EU(A, u') > EU(B, u')



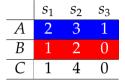
Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*?

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*?



Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*? No!

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*? Yes!

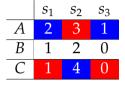


Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*? No!

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*? Yes!

X strictly dominates *Y* when for all states *s*, u(X(s)) > u(Y(s)).

► *A* strictly dominates *B*

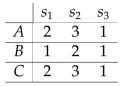


Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*? No!

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*? Yes!

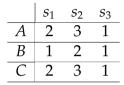
X strictly dominates *Y* when for all states *s*, u(X(s)) > u(Y(s)).

- ► *A* strictly dominates *B*
- ► *A* does not strictly dominate *C*

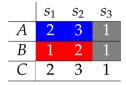


Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *B* to *A*?

Is there a way of assigning probabilities to the states s_1 , s_2 , and s_3 such that the decision maker strictly prefers *C* to *A*?



Does the decision maker strictly prefer *A* to *B*? Does the decision maker strictly prefer *A* to *C*?

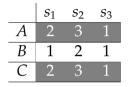


Does the decision maker strictly prefer *A* to *B*? Depends...

Does the decision maker strictly prefer A to C? No!

X weakly dominates *Y* when for all states *s*, $u(X(s)) \ge u(Y(s))$ and there is some *s*' such that u(X(s')) > u(Y(s')).

► *A* weakly dominates *B*



Does the decision maker strictly prefer A to B? Depends...

Does the decision maker strictly prefer A to C? No!

X weakly dominates *Y* when for all states *s*, $u(X(s)) \ge u(Y(s))$ and there is some *s*' such that u(X(s')) > u(Y(s')).

- ► *A* weakly dominates *B*
- ► *A* does not weakly dominate *C*