PHPE 400 Individual and Group Decision Making

Eric Pacuit University of Maryland pacuit.org

A **rational** preference over lotteries involves more than the assumption that the decision maker's preferences are transitive and complete:

- 1. Independence axiom
- 2. Compound lottery axiom
- 3. Continuity axiom

Suppose that $X = \{a, b, c\}$ and the decision maker has the strict preference

a P b P c

Consider the lotteries $L_1 = [a: 0.5, c: 0.5]$ and $L_2 = [b: 1]$

Suppose that $X = \{a, b, c\}$ and the decision maker has the strict preference

a P b P c

Consider the lotteries $L_1 = [a : 0.5, c : 0.5]$ and $L_2 = [b : 1]$

The decision maker's ranking of L_1 and L_2 depends on whether *b* is "closer to" *a* than to *c*. That is, the decision maker must be able to compare the difference between *a* and *b* and the difference between *b* and *c*

Suppose that $X = \{a, b, c\}$ and the decision maker has the strict preference

a P b P c

Consider the lotteries $L_1 = [a : 0.5, c : 0.5]$ and $L_2 = [b : 1]$

The decision maker's ranking of L_1 and L_2 depends on whether *b* is "closer to" *a* than to *c*. That is, the decision maker must be able to compare the difference between *a* and *b* and the difference between *b* and *c*

$$a \xrightarrow{u(a) - u(b)} c \xrightarrow{u(b) - u(c)} b \xrightarrow{c} c$$

Suppose that $X = \{a, b, c\}$ and the decision maker has the strict preference

a P b P c

Consider the lotteries $L_1 = [a: 0.5, c: 0.5]$ and $L_2 = [b: 1]$

	а	b	С		
u_1	4	1.5	1	$u_1(a) > u_1(b) > u_1(c)$	$EU(L_1, u_1) > EU(L_2, u_1)$
u_2	4	2.5	1	$u_2(a) > u_2(b) > u_2(c)$	$EU(L_1, u_2) = EU(L_2, u_2)$
u_3	4	3	1	$u_3(a) > u_3(b) > u_3(c)$	$EU(L_1, u_3) < EU(L_2, u_3)$

Suppose that $X = \{a, b, c\}$ and the decision maker has the strict preference

a P b P c

Consider the lotteries $L_1 = [a: 0.5, c: 0.5]$ and $L_2 = [b: 1]$

	а	b	С		
u_1	4	1.5	1	$u_1(a) > u_1(b) > u_1(c)$	$EU(L_1, u_1) > EU(L_2, u_1)$
u_2	4	2.5	1	$u_2(a) > u_2(b) > u_2(c)$	$EU(L_1, u_2) = EU(L_2, u_2)$
u_3	4	3	1	$u_3(a) > u_3(b) > u_3(c)$	$EU(L_1, u_3) < EU(L_2, u_3)$

Problem: u_1 , u_2 , and u_3 each represent the decision maker's preferences, but rank L_1 and L_2 differently according to the expected utility.

Ordinal vs. Cardinal Utility

Ordinal Utility: Qualitative comparisons of objects allowed, no information about differences or ratios.

Ordinal vs. Cardinal Utility

Ordinal Utility: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal Utility:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.

E.g., the difference between 75°F and 70°F is the same as the difference between 30°F and 25°F However, 70°F (= 21.11° C) is **not** twice as hot as 35°F (= 1.67° C).

Ordinal vs. Cardinal Utility

Ordinal Utility: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal Utility:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.

E.g., the difference between 75°F and 70°F is the same as the difference between 30°F and 25°F However, 70°F (= 21.11° C) is **not** twice as hot as 35°F (= 1.67° C).

Ratio scale: Quantitative comparisons of objects, accurately reflects ratios between objects. E.g., 10lb (= 4.53592kg) is twice as much as 5lb (= 2.26796kg).

Measuring Utility

L. Narens and B. Skyrms (2020). *The Pursuit of Happiness: Philosophical and Psychological Foundations of Utility*. Oxford University Press.

I. Moscati (2018). *Measuring Utility From the Marginal Revolution to Behavioral Economics*. Oxford University Press.

Fact. If (P, I) is a rational preference on \mathcal{L} (plus another condition since \mathcal{L} is infinite), then there is a $U : \mathcal{L} \to \mathbb{R}$ such that L P L' if and only if U(L) > U(L') and L I L' if and only if U(L) = U(L').

Fact. If (P, I) is a rational preference on \mathcal{L} (plus another condition since \mathcal{L} is infinite), then there is a $U : \mathcal{L} \to \mathbb{R}$ such that L P L' if and only if U(L) > U(L') and L I L' if and only if U(L) = U(L').

1. Prefer lotteries that are closer to 50-50:

$$U_1([a:r,b:(1-r)]) = -|r - \frac{1}{2}|$$

2. Prefer lotteries with a higher chance of ending up with *a*:

$$U_2([a:r,b:(1-r)]) = r$$

Fact. If (P, I) is a rational preference on \mathcal{L} (plus another condition since \mathcal{L} is infinite), then there is a $U : \mathcal{L} \to \mathbb{R}$ such that L P L' if and only if U(L) > U(L') and L I L' if and only if U(L) = U(L').

1. Prefer lotteries that are closer to 50-50:

$$U_1([a:r,b:(1-r)]) = -|r - \frac{1}{2}|$$

2. Prefer lotteries with a higher chance of ending up with *a*:

$$U_2([a:r,b:(1-r)]) = r$$

The second preference is *rational* while the first preference is irrational: Intuitively, preferences over lotteries should have something to do with preferences over consequences. A function $U : \mathcal{L} \to \mathbb{R}$ is **linear** provided that for any $L = [x_1 : p_1, \ldots, x_n : p_n]$,

 $U(L) = p_1 U(x_1) + \cdots + p_n U(x_n)$

A function $U : \mathcal{L} \to \mathbb{R}$ is **linear** provided that for any $L = [x_1 : p_1, \ldots, x_n : p_n]$,

$$U(L) = p_1 U(x_1) + \dots + p_n U(x_n) = p_1 U([x_1 : 1]) + \dots + p_n U([x_n : 1])$$

A function $U : \mathcal{L} \to \mathbb{R}$ is **linear** provided that for any $L = [x_1 : p_1, \dots, x_n : p_n]$,

$$U(L) = p_1 U(x_1) + \dots + p_n U(x_n) = p_1 U([x_1 : 1]) + \dots + p_n U([x_n : 1])$$

$$U_2 \text{ is linear: For any lottery } [a:r,b:(1-r)],$$
$$U_2([a:r,b:1-r]) = r$$
$$rU_2([a:1]) + (1-r)U_2([b:1]) = r \times 1 + (1-r) \times 0$$
$$= r$$

A function $U : \mathcal{L} \to \mathbb{R}$ is **linear** provided that for any $L = [x_1 : p_1, \dots, x_n : p_n]$,

$$U(L) = p_1 U(x_1) + \dots + p_n U(x_n) = p_1 U([x_1 : 1]) + \dots + p_n U([x_n : 1])$$

 U_1 is **not** linear: Consider the lottery $[a: \frac{1}{4}, b: \frac{3}{4}]$

$$U_{1}([a:\frac{1}{4},b:\frac{3}{4}]) = -|\frac{1}{4} - \frac{1}{2}|$$

$$= -\frac{1}{4}$$

$$\frac{1}{4}U_{1}([a:1]) + \frac{3}{4}U_{1}([b:1]) = \frac{1}{4} \times -|1 - \frac{1}{2}| + \frac{3}{4} \times -|0 - \frac{1}{2}|$$

$$= -\frac{1}{8} + -\frac{3}{8}$$

$$= -\frac{1}{2}$$

Given a rational preference (P, I) over the set of lotteries \mathcal{L} we want to guarantee that the rational preference is represented by a *linear* utility function $U : \mathcal{L} \to \mathbb{R}$: For any $L = [x_1 : p_1, \ldots, x_n : p_n]$,

$$U(L) = p_1 U(x_1) + \cdots + p_n U(x_n)$$

We need additional constraints on the decision maker's preferences to rule out preferences over lotteries that are not representable by a linear utility function.

Von Neumann-Morgenstern Theorem

Von Neumann-Morgenstern Representation Theorem Suppose that (P, I) is a rational preference on the set \mathcal{L} of lotteries. Then, (P, I) satisfies Compound Lotteries, Independence and Continuity if, and only if, (P, I) is represented by a **linear utility function**.

Von Neumann-Morgenstern Theorem

Von Neumann-Morgenstern Representation Theorem Suppose that (P, I) is a rational preference on the set \mathcal{L} of lotteries. Then, (P, I) satisfies Compound Lotteries, Independence and Continuity if, and only if, (P, I) is represented by a **linear utility function**.

Moreover, the utility function is *unique up to linear transformations*.

Linear Transformations

Suppose that $u : X \to \mathbb{R}$ is a utility function. We say that $u' : X \to \mathbb{R}$ is a **linear transformation of** *u* provided that there are numbers a > 0 and *b* such that for all $x \in X$: (also called **positive affine transformation**)

u'(x) = au(x) + b

Linear Transformations

Suppose that $u : X \to \mathbb{R}$ is a utility function. We say that $u' : X \to \mathbb{R}$ is a **linear transformation of** *u* provided that there are numbers a > 0 and *b* such that for all $x \in X$: (also called **positive affine transformation**)

u'(x) = au(x) + b

E.g., suppose that $u : \{a, b, c\} \rightarrow \mathbb{R}$ with u(a) = 3, u(b) = 2 and u(c) = 0.

	а	b	С	
u_1	32	22	2	linear transformation
u_2	0.75	0.5	0	linear transformation

Linear Transformations

Suppose that $u : X \to \mathbb{R}$ is a utility function. We say that $u' : X \to \mathbb{R}$ is a **linear transformation of** *u* provided that there are numbers a > 0 and *b* such that for all $x \in X$: (also called **positive affine transformation**)

u'(x) = au(x) + b

E.g., suppose that $u : \{a, b, c\} \rightarrow \mathbb{R}$ with u(a) = 3, u(b) = 2 and u(c) = 0.

	а	b	С	
u_1	32	22	2	linear transformation
u_2	0.75	0.5	0	linear transformation
u_3	9	4	0	not a linear transformation
u_4	-3	-2	0	not a linear transformation

For all lotteries L and L' and utility functions u,

- if EU(L, u) > EU(L', u) and u' is a linear transformation of u, then EU(L, u') > EU(L', u')
- if EU(L, u) = EU(L', u) and u' is a linear transformation of u, then EU(L, u') = EU(L', u')

Problems

No action guidance. Rational decision makers do not prefer an act *because* its expected utility is favorable, but can only be described as *if* they were acting from this principle.

Problems

- No action guidance. Rational decision makers do not prefer an act *because* its expected utility is favorable, but can only be described as *if* they were acting from this principle.
- The axioms are too strong. Do rational decisions *have* to obey these axioms?

Problems

- No action guidance. Rational decision makers do not prefer an act *because* its expected utility is favorable, but can only be described as *if* they were acting from this principle.
- The axioms are too strong. Do rational decisions *have* to obey these axioms?
- Important issues about how to identify correct descriptions of the outcomes and options.

Allais Paradox

		Red (1)	White (89)	Blue (10)
S_1	Α	1M	1M	1M
	В	0	1M	5M

Allais Paradox

		Red (1)	White (89)	Blue (10)
S_2	С	1M	0	1M
	D	0	0	5M

Allais Paradox

		Red (1)	White (89)	Blue (10)
S_1	Α	1 <i>M</i>	1M	1 <i>M</i>
	В	0	1M	5M
S_2	С	1M	0	1M
	D	0	0	5 <i>M</i>

Independence and Allais

 $[1M:rac{1}{100},1M:rac{89}{100},1M:rac{10}{100}]$ P $[0:rac{1}{100},1M:rac{89}{100},5M:rac{10}{100}]$

$$\begin{bmatrix} 1M:\frac{1}{11}, 1M:\frac{10}{11} \end{bmatrix} : \frac{11}{100}, \begin{bmatrix} 1M:1 \end{bmatrix} : \frac{89}{100} \end{bmatrix} \quad P \quad \begin{bmatrix} 0:\frac{1}{11}, 5M:\frac{10}{11} \end{bmatrix} : \frac{11}{100}, \begin{bmatrix} 1M:1 \end{bmatrix} : \frac{89}{100} \end{bmatrix}$$

		Red (1)	White (89)	Blue (10)
S_1	Α	1M	1M	1M
	В	0	1M	5 <i>M</i>
S_2	С	1M	0	1M
	D	0	0	5M

A P B if and only if C P D