PHPE 400
 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Politics case maximi
Rease theorem che "nimotwee Philosophy Game The

A rational preference over lotteries involves more than the assumption that the decision maker's preferences are transitive and complete:

1. Independence axiom
2. Compound lottery axiom
3. Continuity axiom

Ordinal Utility and Expected Utility

Suppose that $X=\{a, b, c\}$ and the decision maker has the strict preference

$$
a P b P c
$$

Consider the lotteries $L_{1}=[a: 0.5, c: 0.5]$ and $L_{2}=[b: 1]$

Ordinal Utility and Expected Utility

Suppose that $X=\{a, b, c\}$ and the decision maker has the strict preference

$$
a P b P c
$$

Consider the lotteries $L_{1}=[a: 0.5, c: 0.5]$ and $L_{2}=[b: 1]$
The decision maker's ranking of L_{1} and L_{2} depends on whether b is "closer to" a than to c. That is, the decision maker must be able to compare the difference between a and b and the difference between b and c

Ordinal Utility and Expected Utility

Suppose that $X=\{a, b, c\}$ and the decision maker has the strict preference

$$
a P b P c
$$

Consider the lotteries $L_{1}=[a: 0.5, c: 0.5]$ and $L_{2}=[b: 1]$
The decision maker's ranking of L_{1} and L_{2} depends on whether b is "closer to" a than to c. That is, the decision maker must be able to compare the difference between a and b and the difference between b and c

Ordinal Utility and Expected Utility

Suppose that $X=\{a, b, c\}$ and the decision maker has the strict preference

$$
a P b P c
$$

Consider the lotteries $L_{1}=[a: 0.5, c: 0.5]$ and $L_{2}=[b: 1]$

	a	b	c		
u_{1}	4	1.5	1	$u_{1}(a)>u_{1}(b)>u_{1}(c)$	$E U\left(L_{1}, u_{1}\right)>\operatorname{EU}\left(L_{2}, u_{1}\right)$
u_{2}	4	2.5	1	$u_{2}(a)>u_{2}(b)>u_{2}(c)$	$E U\left(L_{1}, u_{2}\right)=E U\left(L_{2}, u_{2}\right)$
u_{3}	4	3	1	$u_{3}(a)>u_{3}(b)>u_{3}(c)$	$E U\left(L_{1}, u_{3}\right)<E U\left(L_{2}, u_{3}\right)$

Ordinal Utility and Expected Utility

Suppose that $X=\{a, b, c\}$ and the decision maker has the strict preferance

$$
a P b P c
$$

Consider the lotteries $L_{1}=[a: 0.5, c: 0.5]$ and $L_{2}=[b: 1]$

	a	b	c		
u_{1}	4	1.5	1	$u_{1}(a)>u_{1}(b)>u_{1}(c)$	$E U\left(L_{1}, u_{1}\right)>\operatorname{EU}\left(L_{2}, u_{1}\right)$
u_{2}	4	2.5	1	$u_{2}(a)>u_{2}(b)>u_{2}(c)$	$E U\left(L_{1}, u_{2}\right)=E U\left(L_{2}, u_{2}\right)$
u_{3}	4	3	1	$u_{3}(a)>u_{3}(b)>u_{3}(c)$	$E U\left(L_{1}, u_{3}\right)<E U\left(L_{2}, u_{3}\right)$

Problem: u_{1}, u_{2}, and u_{3} each represent the decision maker's preferences, but rank L_{1} and L_{2} differently according to the expected utility.

Ordinal vs. Cardinal Utility

 Nens shemencemo Arrow Social Choice
Rationality
arrows theocrem
Ordinal Utility: Qualitative comparisons of objects allowed, no information about differences or ratios.

Ordinal vs. Cardinal Utility

 Mas semen wisw Nash Condorcets ParagoxRational Choice
Theory P ParetoHarsany Arrow Socia
Rationality

Ordinal Utility: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal Utility:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$.

Ordinal vs. Cardinal Utility

 ArrowSocial Choice ParetoHarsan ${ }_{\text {Rrows tionality }}$
Ordinal Utility: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal Utility:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$.

Ratio scale: Quantitative comparisons of objects, accurately reflects ratios between objects. E.g., $10 \mathrm{lb}(=4.53592 \mathrm{~kg})$ is twice as much as 5 lb ($=2.26796 \mathrm{~kg}$).

Measuring Utility

 Mas semen wey Nash Condorcets ParresoxRational Choice Theory ParetoHarsany
ArrowS Social Choice Theory Sen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
L. Narens and B. Skyrms (2020). The Pursuit of Happiness: Philosophical and Psychological Foundations of Utility. Oxford University Press.
I. Moscati (2018). Measuring Utility From the Marginal Revolution to Behavioral Economics. Oxford University Press.

Fact. If (P, I) is a rational preference on \mathcal{L} (plus another condition since \mathcal{L} is infinite), then there is a $U: \mathcal{L} \rightarrow \mathbb{R}$ such that $L P L^{\prime}$ if and only if $U(L)>U\left(L^{\prime}\right)$ and L I L^{\prime} if and only if $U(L)=U\left(L^{\prime}\right)$.

Fact. If (P, I) is a rational preference on \mathcal{L} (plus another condition since \mathcal{L} is infinite), then there is a $U: \mathcal{L} \rightarrow \mathbb{R}$ such that $L P L^{\prime}$ if and only if $U(L)>U\left(L^{\prime}\right)$ and $L I L^{\prime}$ if and only if $U(L)=U\left(L^{\prime}\right)$.

1. Prefer lotteries that are closer to $50-50$:

$$
U_{1}([a: r, b:(1-r)])=-\left|r-\frac{1}{2}\right|
$$

2. Prefer lotteries with a higher chance of ending up with a :

$$
U_{2}([a: r, b:(1-r)])=r
$$

Fact. If (P, I) is a rational preference on \mathcal{L} (plus another condition since \mathcal{L} is infinite), then there is a $U: \mathcal{L} \rightarrow \mathbb{R}$ such that $L P L^{\prime}$ if and only if $U(L)>U\left(L^{\prime}\right)$ and $L I L^{\prime}$ if and only if $U(L)=U\left(L^{\prime}\right)$.

1. Prefer lotteries that are closer to $50-50$:

$$
U_{1}([a: r, b:(1-r)])=-\left|r-\frac{1}{2}\right|
$$

2. Prefer lotteries with a higher chance of ending up with a :

$$
U_{2}([a: r, b:(1-r)])=r
$$

The second preference is rational while the first preference is irrational: Intuitively, preferences over lotteries should have something to do with preferences over consequences.

A function $U: \mathcal{L} \rightarrow \mathbb{R}$ is linear provided that for any $L=\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]$,

$$
U(L)=p_{1} U\left(x_{1}\right)+\cdots+p_{n} U\left(x_{n}\right)
$$

A function $U: \mathcal{L} \rightarrow \mathbb{R}$ is linear provided that for any $L=\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]$,

$$
U(L)=p_{1} U\left(x_{1}\right)+\cdots+p_{n} U\left(x_{n}\right)=p_{1} U\left(\left[x_{1}: 1\right]\right)+\cdots+p_{n} U\left(\left[x_{n}: 1\right]\right)
$$

A function $U: \mathcal{L} \rightarrow \mathbb{R}$ is linear provided that for any $L=\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]$,

$$
U(L)=p_{1} U\left(x_{1}\right)+\cdots+p_{n} U\left(x_{n}\right)=p_{1} U\left(\left[x_{1}: 1\right]\right)+\cdots+p_{n} U\left(\left[x_{n}: 1\right]\right)
$$

U_{2} is linear: For any lottery $[a: r, b:(1-r)]$,

$$
\begin{aligned}
U_{2}([a: r, b: 1-r]) & =\boldsymbol{r} \\
r U_{2}([a: 1])+(1-r) U_{2}([b: 1]) & =r \times 1+(1-r) \times 0 \\
& =\boldsymbol{r}
\end{aligned}
$$

A function $U: \mathcal{L} \rightarrow \mathbb{R}$ is linear provided that for any $L=\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]$,

$$
U(L)=p_{1} U\left(x_{1}\right)+\cdots+p_{n} U\left(x_{n}\right)=p_{1} U\left(\left[x_{1}: 1\right]\right)+\cdots+p_{n} U\left(\left[x_{n}: 1\right]\right)
$$

U_{1} is not linear: Consider the lottery $\left[a: \frac{1}{4}, b: \frac{3}{4}\right]$

$$
\begin{aligned}
U_{1}\left(\left[a: \frac{1}{4}, b: \frac{3}{4}\right]\right) & =-\left|\frac{1}{4}-\frac{1}{2}\right| \\
& =-\frac{1}{4} \\
\frac{1}{4} U_{1}([a: 1])+\frac{3}{4} U_{1}([b: 1]) & =\frac{1}{4} \times-\left|1-\frac{1}{2}\right|+\frac{3}{4} \times-\left|0-\frac{1}{2}\right| \\
& =-\frac{1}{8}+-\frac{3}{8} \\
& =-\frac{1}{2}
\end{aligned}
$$

Given a rational preference (P, I) over the set of lotteries \mathcal{L} we want to guarantee that the rational preference is represented by a linear utility function $U: \mathcal{L} \rightarrow \mathbb{R}$: For any $L=\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]$,

$$
U(L)=p_{1} U\left(x_{1}\right)+\cdots p_{n} U\left(x_{n}\right)
$$

We need additional constraints on the decision maker's preferences to rule out preferences over lotteries that are not representable by a linear utility function.

Von Neumann-Morgenstern Theorem

 was same wemocronomics Nash condores Choice' Theory ParetoHarsany Arrow Social ChalityRationality

Von Neumann-Morgenstern Representation Theorem Suppose that (P, I) is a rational preference on the set \mathcal{L} of lotteries. Then, (P, I) satisfies Compound Lotteries, Independence and Continuity if, and only if, (P, I) is represented by a linear utility function.

Von Neumann-Morgenstern Theorem

 Najchenace same ECOMOM, ArrowSocial Choice TheorySen Rationality

Von Neumann-Morgenstern Representation Theorem Suppose that (P, I) is a rational preference on the set \mathcal{L} of lotteries. Then, (P, I) satisfies Compound Lotteries, Independence and Continuity if, and only if, (P, I) is represented by a linear utility function.

Moreover, the utility function is unique up to linear transformations.

Linear Transformations

Suppose that $u: X \rightarrow \mathbb{R}$ is a utility function. We say that $u^{\prime}: X \rightarrow \mathbb{R}$ is a linear transformation of u provided that there are numbers $a>0$ and b such that for all $x \in X$: (also called positive affine transformation)

$$
u^{\prime}(x)=a u(x)+b
$$

Linear Transformations

Suppose that $u: X \rightarrow \mathbb{R}$ is a utility function. We say that $u^{\prime}: X \rightarrow \mathbb{R}$ is a linear transformation of u provided that there are numbers $a>0$ and b such that for all $x \in X$: (also called positive affine transformation)

$$
u^{\prime}(x)=a u(x)+b
$$

E.g., suppose that $u:\{a, b, c\} \rightarrow \mathbb{R}$ with $u(a)=3, u(b)=2$ and $u(c)=0$.

	a	b	c	
u_{1}	32	22	2	linear transformation
u_{2}	0.75	0.5	0	linear transformation

Linear Transformations

Suppose that $u: X \rightarrow \mathbb{R}$ is a utility function. We say that $u^{\prime}: X \rightarrow \mathbb{R}$ is a linear transformation of u provided that there are numbers $a>0$ and b such that for all $x \in X$: (also called positive affine transformation)

$$
u^{\prime}(x)=a u(x)+b
$$

E.g., suppose that $u:\{a, b, c\} \rightarrow \mathbb{R}$ with $u(a)=3, u(b)=2$ and $u(c)=0$.

	a	b	c	
u_{1}	32	22	2	linear transformation
u_{2}	0.75	0.5	0	linear transformation
u_{3}	9	4	0	not a linear transformation
u_{4}	-3	-2	0	not a linear transformation

For all lotteries L and L^{\prime} and utility functions u,

- if $E U(L, u)>E U\left(L^{\prime}, u\right)$ and u^{\prime} is a linear transformation of u, then $E U\left(L, u^{\prime}\right)>E U\left(L^{\prime}, u^{\prime}\right)$
- if $E U(L, u)=E U\left(L^{\prime}, u\right)$ and u^{\prime} is a linear transformation of u, then $E U\left(L, u^{\prime}\right)=E U\left(L^{\prime}, u^{\prime}\right)$

Problems

 uns nemene wo conomics Rational crove Theor $\underset{\text { Rrrows theorem }}{\text { Ratity }}$- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.

Problems

 uns nemene wo conomics Rationac chowe thiar $\underset{\text { Rrrows theorem }}{\text { Ratity }}$- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.
- The axioms are too strong. Do rational decisions have to obey these axioms?

Problems

 uns nemene wo conomics Nash Rational Choice Theory ParetoHarsany Arrowsocial ChoiceRationality

- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.
- The axioms are too strong. Do rational decisions have to obey these axioms?
- Important issues about how to identify correct descriptions of the outcomes and options.

Allais Paradox

 Arrowsocial Cholice

		$\operatorname{Red}(1)$	White (89)	Blue (10)
S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$

Allais Paradox

 wans rame ther Arrowsocial Rnalice

		Red (1)	White (89)	Blue (10)
S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

Allais Paradox

 was same wein Economics Arrowsocial Rnalice

		Red (1)	White (89)	Blue (10)
S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$
S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

Independence and Allais

 Nash consorcets Pararobx Lheory ParetoHarsanyi
Rational Choice The
ArrowSocial Choice TheorySen

$$
\left[1 M: \frac{1}{100}, 1 M: \frac{89}{100}, 1 M: \frac{10}{100}\right] \quad P \quad\left[0: \frac{1}{100}, 1 M: \frac{89}{100}, 5 M: \frac{10}{100}\right]
$$

Independence and Allais

 Rational Choice Theory ParetoHarsanyiArrowSocial Choice TheorySen

$$
\begin{array}{rc}
{\left[1 M: \frac{1}{100}, 1 M: \frac{89}{100}, 1 M: \frac{10}{100}\right]} & P \\
& {\left[0: \frac{1}{100}, 1 M: \frac{89}{100}, 5 M: \frac{10}{100}\right]} \\
\text { iff }
\end{array}
$$

$$
\left[\left[1 M: \frac{1}{11}, 1 M: \frac{10}{11}\right]: \frac{11}{100},[1 M: 1]: \frac{89}{100}\right] \quad P \quad\left[\left[0: \frac{1}{11}, 5 M: \frac{10}{11}\right]: \frac{11}{100},[1 M: 1]: \frac{89}{100}\right]
$$

Independence and Allais

$$
\left[1 M: \frac{1}{100}, 1 M: \frac{89}{100}, 1 M: \frac{10}{100}\right] \quad P \quad\left[0: \frac{1}{100}, 1 M: \frac{89}{100}, 5 M: \frac{10}{100}\right]
$$

iff

Independence and Allais

$$
\left[1 M: \frac{1}{100}, 1 M: \frac{89}{100}, 1 M: \frac{10}{100}\right] \quad P \quad\left[0: \frac{1}{100}, 1 M: \frac{89}{100}, 5 M: \frac{10}{100}\right]
$$

Independence and Allais

$$
\left[1 M: \frac{1}{100}, 1 M: \frac{89}{100}, 1 M: \frac{10}{100}\right] \quad P \quad\left[0: \frac{1}{100}, 1 M: \frac{89}{100}, 5 M: \frac{10}{100}\right]^{100}
$$

$\left[\left[0: \frac{1}{11}, 5 M: \frac{10}{11}\right]: \frac{11}{100},[1 M: 1]: \frac{89}{100}\right]$
iff
$\left[1 M: \frac{1}{11}, 1 M: \frac{10}{11}\right] \quad P$
$\left[0: \frac{1}{11}, 5 M: \frac{10}{11}\right]$
iff

$$
\left[\left[1 M: \frac{1}{11}, 1 M: \frac{10}{11}\right]: \frac{11}{100},[0: 1]: \frac{89}{100}\right] \quad P
$$

$$
\left[\left[0: \frac{1}{11}, 5 M: \frac{10}{11}\right]: \frac{11}{100},[0: 1]: \frac{89}{100}\right]
$$

$$
\left[1 M: \frac{1}{100}, 0: \frac{89}{100}, 1 M: \frac{10}{100}\right] \quad P \quad\left[0: \frac{1}{100}, 0: \frac{89}{100}, 5 M: \frac{10}{100}\right]
$$

$\left.\begin{array}{l}{[1 M: 0.01,} \\ {[1 M: 0.89,} \\ {[0: 0.01,} \\ \hline\end{array} 1 M: 0.89, \quad 5 M: 0.1\right][]$
$\left.\begin{array}{lll}{[1 M: 0.01,} & 0: 0.89, & 1 M: 0.1 \\ {[0: 0.01,} & 0: 0.89, & 5 M: 0.1\end{array}\right]$

$\left[\begin{array}{lll} & 1 M: 0.01, & 1 M: 0.89, \\ {[} & 1 M: 0.1 \\ {[0: 0.01,} & 1 M: 0.89, & 5 M: 0.1\end{array}\right]$
$[1 M: 0.01$,
$\left[\begin{array}{lll} & 0: 0.89, & 1 M: 0.1 \\ {[0: 0.01,} & 0: 0.89, & 5 M: 0.1 \\ \hline\end{array}\right]$

		$\operatorname{Red}(1)$	White (89)	Blue (10)
S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$
S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

$A P B$ if and only if $C P D$

