PHPE 400
 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Politics case maximi
Rease theorem chice Hume
 Game The

A rational preference over lotteries involves more than the assumption that the decision maker's preferences are transitive and complete:

1. Independence axiom
2. Compound lottery axiom
3. Continuity axiom

A rational preference over lotteries involves more than the assumption that the decision maker's preferences are transitive and complete:

1. Independence axiom
2. Compound lottery axiom
3. Continuity axiom

Suppose that the decision maker is rational and has the preference $a P b$ (the decision maker strictly prefers a to b).

How should the decision maker rank the lotteries
$L_{1}=[a: 0.6, b: 0.4]$ and $L_{2}=[a: 0.4, b: 0.6]$?

Suppose that the decision maker is rational and has the preference $a P b$ (the decision maker strictly prefers a to b).

How should the decision maker rank the lotteries $L_{1}=[a: 0.6, b: 0.4]$ and $L_{2}=[a: 0.4, b: 0.6]$?

1. $L_{1} P L_{2}$: The decision maker should strictly prefer L_{1} to L_{2}.
2. $L_{2} P L_{1}$: The decision maker should strictly prefer L_{2} to L_{1}.
3. $L_{1} I L_{2}$: The decision maker should be indifferent between L_{1} and L_{2}.
4. There is not enough information to answer this question.

Suppose that the decision maker is rational and has the preference $a P b$ (the decision maker strictly prefers a to b).

How should the decision maker rank the lotteries $L_{1}=[a: 0.6, b: 0.4]$ and $L_{2}=[a: 0.4, b: 0.6]$?

1. $L_{1} P L_{2}$: The decision maker should strictly prefer L_{1} to L_{2}.
2. $L_{2} P L_{1}$: The decision maker should strictly prefer L_{2} to L_{1}.
3. L_{1} I L_{2} : The decision maker should be indifferent between L_{1} and L_{2}.
4. There is not enough information to answer this question.

Suppose that the decision maker is rational and has the preference $a P b$ (the decision maker strictly prefers a to b) and c is another item.

How should the decision maker rank the lotteries

$$
L_{1}=[a: 0.6, c: 0.4] \text { and } L_{2}=[b: 0.6, c: 0.4] ?
$$

Suppose that the decision maker is rational and has the preference $a P b$ (the decision maker strictly prefers a to b) and c is another item.

How should the decision maker rank the lotteries
$L_{1}=[a: 0.6, c: 0.4]$ and $L_{2}=[b: 0.6, c: 0.4]$?

1. $L_{1} P L_{2}$: The decision maker should strictly prefer L_{1} to L_{2}.
2. $L_{2} P L_{1}$: The decision maker should strictly prefer L_{2} to L_{1}.
3. $L_{1} I L_{2}$: The decision maker should be indifferent between L_{1} and L_{2}.
4. There is not enough information to answer this question.

Suppose that the decision maker is rational and has the preference $a P b$ (the decision maker strictly prefers a to b) and c is another item.

How should the decision maker rank the lotteries
$L_{1}=[a: 0.6, c: 0.4]$ and $L_{2}=[b: 0.6, c: 0.4]$?

1. $L_{1} P L_{2}$: The decision maker should strictly prefer L_{1} to L_{2}.
2. $L_{2} P L_{1}$: The decision maker should strictly prefer L_{2} to L_{1}.
3. $L_{1} I L_{2}$: The decision maker should be indifferent between L_{1} and L_{2}.
4. There is not enough information to answer this question.

Suppose that the decision maker is rational and has the preference $a P b$ (the decision maker strictly prefers a to b) and c is another item.

Then, a rational decision maker will have the following preferences:

1. The decision maker strictly prefers $[a: 0.6, b: 0.4]$ over $[a: 0.4, b: 0.6]$
2. The decision maker strictly prefers $[a: 0.6, c: 0.4]$ over $[a: 0.6, c: 0.4]$

Suppose that the decision maker is rational and has the preference $a P b$ (the decision maker strictly prefers a to b) and c is another item.

Then, a rational decision maker will have the following preferences:

1. The decision maker strictly prefers $[a: 0.6, b: 0.4]$ over $[a: 0.4, b: 0.6]$
2. The decision maker strictly prefers $[a: 0.6, c: 0.4]$ over $[a: 0.6, c: 0.4]$

Neither of these preferences can be inferred if all you know is that the decision maker's preferences over lotteries satisfies transitivity and completeness.

Politics
Game Hathenvis sheosem PhilOSOphy

Nash condercets fargobex ECO Paretorarssany
Arrow Social Choice TheorySen
$\underset{\text { Rations theerem }}{\text { Ralty }}$

V

Politics
mosme inion we Philosiophy Mays Theorem Gous
Nash Condorcet's Paradox ECO CO
Rational Choice Theory

ArrowSocial Choice TheorySen Rationality
Arrows theorem

Politics
Game thensume Philosiophy

Arrowscial Choice
Rationality
||

Politics

Arrow Social Choice TheorySen
||

Politics
Game thensume Philosiophy

Arrowscial Choice
Rationality
||

Politics
Game thenume Philosophy

ArrowSocial Choice
Rationality
Arrows theewen

\wedge

Politics
Game theirnowishilosopiphy ways rame ther wisconomics

Arrowscial Choice
Rationality

\wedge

Independence

 Nash conararests faraon
Rational Choict Theory Pareto Harssanyi

Arrowsocial Choice
Rationality
Arrow siteerem

For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $0<p \leq 1$,

$$
L_{1} P L_{2} \text { if, and only if, }\left[L_{1}: p, L_{3}:(1-p)\right] P\left[L_{2}: p, L_{3}:(1-p)\right] .
$$

$L_{1} I L_{2}$ if, and only if, $\left[L_{1}: p, L_{3}:(1-p)\right] I\left[L_{2}: p, L_{3}:(1-p)\right]$.

Independence

 Arrowsocial Cholice

For all $\square, \square \in \mathcal{L}$ and $0<p \leq 1$, $\square P \square$ if, and only if, $\square: p, \square:(1-p)] P[\square: p, \square:(1-p)]$.

$$
\square I \square \text { if, and only if, } \square: p, \square:(1-p)] I[\square: p, \square:(1-p)] \text {. }
$$

Combining Lotteries

 nes nemen wemmeronomics $\underset{\text { Rrrows theocem }}{\text { Ratity }}$

Suppose that $L_{1}=[a: 0.5, b: 0.5]$ and $L_{2}=[b: 0.25, c: 0.75]$
There are many ways to combine these lotteries.
E.g., $\left[L_{1}: 0.2, L_{2}: 0.8\right]=[[a: 0.5, b: 0.5]: 0.2,[b: 0.25, c: 0.75]: 0.8]$

Combining Lotteries

 Mens shemen wem Economics

$$
L_{1}=[a: 0.5, b: 0.5]
$$

$$
L_{2}=[b: 0.25, c: 0.75]
$$

Combining Lotteries

Politics cass hemm tume
 Nsinemancersmet heconomicS Arrow Social Choice
Ratrows theonem

$$
L_{1}=[a: 0.5, b: 0.5]
$$

$$
L_{2}=[b: 0.25, c: 0.75]
$$

Combining Lotteries

 Mas seme temourconomics

Combining Lotteries

Politics cass tamm imp

Combining Lotteries

Politicscass hamm tum

 Arrow Social Choice
Raationality
arrows theorem

Combining Lotteries

 ArrowSocial Choice TheorySen ${ }_{\text {Rrows }}$ Rationality

Suppose that $L_{1}=[a: 0.5, b: 0.5]$ and $L_{2}=[b: 0.25, c: 0.75]$

- $\left[L_{1}: 0.2, L_{2}: 0.8\right]=[[a: 0.5, b: 0.5]: 0.2,[b: 0.25, c: 0.75]: 0.8]$ is a compound lottery
- The simplification of $\left[L_{1}: 0.2, L_{2}: 0.8\right]$ is $[a: 0.1, b: 0.3, c: 0.6]$.

Compound Lottery Axiom: The decision maker is indifferent between any lottery and its simplification.

Two preferences

Suppose that $X=\{a, b\}$. Then the set of lotteries over X is

$$
\mathcal{L}=\{[a: r, b:(1-r)] \mid 0 \leq r \leq 1\}
$$

1. Prefer lotteries that are closer to $50-50$: E.g.,

$$
\left[a: \frac{1}{2}, b: \frac{1}{2}\right] P\left[a: \frac{1}{4}, b: \frac{3}{4}\right] I\left[a: \frac{3}{4}, b: \frac{1}{4}\right] P[a: 1, b: 0] I[a: 0, b: 1]
$$

2. Prefer lotteries with a higher chance of ending up with a : E.g.,

$$
[a: 1, b: 0] P\left[a: \frac{3}{4}, b: \frac{1}{4}\right] P\left[a: \frac{1}{2}, b: \frac{1}{2}\right] P\left[a: \frac{1}{4}, b: \frac{3}{4}\right] P[a: 0, b: 1]
$$

The first preference violates the Independence Axiom while the second preference satisfies the Independence Axiom.

Independence: For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $0<p \leq 1$,
$L_{1} P L_{2}$ if, and only if, $\left[L_{1}: p, L_{3}:(1-p)\right] P\left[L_{2}: p, L_{3}:(1-p)\right]$.
The following preferences violates independence:

$$
\left[a: \frac{1}{2}, b: \frac{1}{2}\right] P\left[a: \frac{1}{4}, b: \frac{3}{4}\right] I\left[a: \frac{3}{4}, b: \frac{1}{4}\right] P[a: 1, b: 0] I[a: 0, b: 1]
$$

Independence: For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $0<p \leq 1$,
$L_{1} P L_{2}$ if, and only if, $\left[L_{1}: p, L_{3}:(1-p)\right] P\left[L_{2}: p, L_{3}:(1-p)\right]$.
The following preferences violates independence:

$$
\left[a: \frac{1}{2}, b: \frac{1}{2}\right] P\left[a: \frac{1}{4}, b: \frac{3}{4}\right] I\left[a: \frac{3}{4}, b: \frac{1}{4}\right] P[a: 1, b: 0] I[a: 0, b: 1]
$$

Let $L_{1}=\left[a: \frac{1}{2}, b: \frac{1}{2}\right], L_{2}=[a: 1, b: 0]$, and $L_{3}=[a: 0, b: 1]$.
Then, $L_{1} P L_{2}$.

Independence: For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $0<p \leq 1$,
$L_{1} P L_{2}$ if, and only if, $\left[L_{1}: p, L_{3}:(1-p)\right] P\left[L_{2}: p, L_{3}:(1-p)\right]$.
The following preferences violates independence:

$$
\left[a: \frac{1}{2}, b: \frac{1}{2}\right] P\left[a: \frac{1}{4}, b: \frac{3}{4}\right] I\left[a: \frac{3}{4}, b: \frac{1}{4}\right] P[a: 1, b: 0] I[a: 0, b: 1]
$$

Let $L_{1}=\left[a: \frac{1}{2}, b: \frac{1}{2}\right], L_{2}=[a: 1, b: 0]$, and $L_{3}=[a: 0, b: 1]$.
Then, $L_{1} P L_{2}$.
However, since:

- $\left[L_{1}: \frac{1}{2}, L_{3}: \frac{1}{2}\right] I\left[a: \frac{1}{4}, b: \frac{1}{4}, a: 0, b: \frac{1}{2}\right]=\left[a: \frac{1}{4}, b: \frac{3}{4}\right]$
- $\left[L_{2}: \frac{1}{2}, L_{3}: \frac{1}{2}\right] I\left[a: \frac{1}{2}, b: \frac{1}{2}\right]$
we have: $\left[L_{2}: \frac{1}{2}, L_{3}: \frac{1}{2}\right] P\left[L_{1}: \frac{1}{2}, L_{3}: \frac{1}{2}\right]$.

Independence: For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $0<p \leq 1$, $L_{1} P L_{2}$ if, and only if, $\left[L_{1}: p, L_{3}:(1-p)\right] P\left[L_{2}: p, L_{3}:(1-p)\right]$.

The following preferences violates independence:

$$
\left[a: \frac{1}{2}, b: \frac{1}{2}\right] P\left[a: \frac{1}{4}, b: \frac{3}{4}\right] I\left[a: \frac{3}{4}, b: \frac{1}{4}\right] P[a: 1, b: 0] I[a: 0, b: 1]
$$

Let $L_{1}=\left[a: \frac{1}{2}, b: \frac{1}{2}\right], L_{2}=[a: 1, b: 0]$, and $L_{3}=[a: 0, b: 1]$.
This violates independence since $L_{1} P L_{2}$ but it is not the case that $\left[L_{1}: \frac{1}{2}, L_{3}: \frac{1}{2}\right] P\left[L_{2}: \frac{1}{2}, L_{3}: \frac{1}{2}\right]$.

Independence

 Mas seme temourconomics

Arrow Social Choice
Ratrows theonem

For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $0<p \leq 1$,
$L_{1} P L_{2}$ if, and only if, $\left[L_{1}: p, L_{3}:(1-p)\right] P\left[L_{2}: p, L_{3}:(1-p)\right]$.

$$
L_{1} I L_{2} \text { if, and only if, }\left[L_{1}: p, L_{3}:(1-p)\right] I\left[L_{2}: p, L_{3}:(1-p)\right] .
$$

Independence

Arrowsocia Choice

For all $L, L^{\prime}, L^{\prime \prime} \in \mathcal{L}$ and $0<p \leq 1$,

$$
L P L^{\prime} \text { if, and only if, }\left[L: p, L^{\prime \prime}:(1-p)\right] P\left[L^{\prime}: p, L^{\prime \prime}:(1-p)\right] .
$$

$L I L^{\prime}$ if, and only if, $\left[L: p, L^{\prime \prime}:(1-p)\right] I\left[L^{\prime}: p, L^{\prime \prime}:(1-p)\right]$.

Independence

 Arrowsocial Cholice

For all $\square, \square, \square \in \mathcal{L}$ and $0<p \leq 1$, $\square P \square$ if, and only if, $\square: p, \square:(1-p)] P \square: p, \square:(1-p)]$.

$$
\square I \square \text { if, and only if, } \square: p, \square:(1-p)] I[: p, \square:(1-p)] \text {. }
$$

Independence

 Arrow Rationality

A decision maker does not satisfy the Independence Axiom when there are lotteries L_{1}, L_{2}, L_{3} and a number p such that $0<p \leq 1$ such that at least one of the following is true:

1. $L_{1} P L_{2}$, but it is not the case that $\left[L_{1}: p, L_{3}:(1-p)\right] P\left[L_{2}: p, L_{3}:(1-p)\right]$;
2. $\left[L_{1}: p, L_{3}:(1-p)\right] P\left[L_{2}: p, L_{3}:(1-p)\right]$, but it is not the case that $L_{1} P L_{2}$;
3. $L_{1} I L_{2}$, but it is not the case that $\left[L_{1}: p, L_{3}:(1-p)\right] I\left[L_{2}: p, L_{3}:(1-p)\right]$; or
4. $\left[L_{1}: p, L_{3}:(1-p)\right] I\left[L_{2}: p, L_{3}:(1-p)\right]$, but it is not the case that $L_{1} I L_{2}$.
