PHPE 400
 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Politics case maximi
Rease theorem che "nimotwee Philosophy Game The

Rational Preferences

A pair (P, I) is a rational preference on X provided that $P \subseteq X \times X$ and $I \subseteq X \times X$, such that

- P is asymmetric and transitive. That is, P is a strict weak order.
- I is reflexive, symmetric, and transitive. That is, P is an equivalence relation.
- Completeness: For all $x, y \in X$, exactly one of $x P y, y P x$ or $x I y$ is true.

Rational Preferences

A pair (P, I) is a rational preference on X provided that $P \subseteq X \times X$ and $I \subseteq X \times X$, such that

- P is asymmetric and transitive. That is, P is a strict weak order.
- I is reflexive, symmetric, and transitive. That is, P is an equivalence relation.
- Completeness: For all $x, y \in X$, exactly one of $x P y, y P x$ or $x I y$ is true.

Note that one need only define a strict preference relation P since I can be inferred assuming Completeness (e.g., if not-x P y and not-y P x, then the decision maker must be indifferent between x and y).

Rational Choice

 wassemencem Arrow Rationality

Suppose that X is set and $A \subseteq X$, and that (P, I) is a rational preference on X representing a decision maker's preferences.
$x \in A$ is a rational choice for the decision maker if x is a maximal element of A with respect to P.

Rational Choice

 ArrowSocial Choice
Rationality

Suppose that X is set and $A \subseteq X$, and that (P, I) is a rational preference on X representing a decision maker's preferences.
$x \in A$ is a rational choice for the decision maker if x is a maximal element of A with respect to P.
x is a maximal element of A with respect to P when there is no other element of A that is strictly preferred to y (i.e., there is no $y \in A$ such that $y P x$).

Utility Function

 mass ciane cess Nash tonaracesiowe Theory Peretetharsany Arrowsocia ChoiceA utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

Utility Function

 Arrow Rationality

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A rational preference (P, I) on X, is represented by a utility function $u: X \rightarrow \mathbb{R}$ if, and only if,

1. for all $x, y \in X, x P y$ when $u(x)>u(y)$
2. for all $x, y \in X, x$ I y when $u(x)=u(y)$

Utility Function

 Arrow Rationality

A utility function on a set X is a function $u: X \rightarrow \mathbb{R}$

A rational preference (P, I) on X, is represented by a utility function $u: X \rightarrow \mathbb{R}$ if, and only if,

1. for all $x, y \in X, x P y$ when $u(x)>u(y)$
2. for all $x, y \in X, x$ I y when $u(x)=u(y)$

Ordinal Utility Theory

Fact. Suppose that X is finite and (P, I) is a rational preference on X. Then, there is a utility function $u: X \rightarrow \mathbb{R}$ that represents R

Ordinal Utility Theory

Politics asas hawn fume
 Nash conoracets pargatox ECO ROMOMICS

ArrowSocial Choice TheorySen

Fact. Suppose that X is finite and (P, I) is a rational preference on X. Then, there is a utility function $u: X \rightarrow \mathbb{R}$ that represents R

Utility is defined in terms of the decision maker's preference, so it is an error to say that the decision maker prefers x to y because she assigns a higher utility to x than to y.

Important

All three of the utility functions represent the preference $x P$ y $P z$

Item	u_{1}	u_{2}	u_{3}
x	3	10	1000
y	2	5	99
z	1	0	1

$x P y P z$ is represented by both $(3,2,1)$ and $(1000,999,1)$, so one cannot say that y is "closer" to x than to z.

This may seem bizarre, because people are accustomed to attaching significance to the magnitudes of numbers, not just what they indicate about ordering.

This may seem bizarre, because people are accustomed to attaching significance to the magnitudes of numbers, not just what they indicate about ordering. But the sole purpose of the numbers here is to show the ranking. Any such assignment of numbers is an ordinal utility function.

This may seem bizarre, because people are accustomed to attaching significance to the magnitudes of numbers, not just what they indicate about ordering. But the sole purpose of the numbers here is to show the ranking. Any such assignment of numbers is an ordinal utility function. "Utility" here does not refer to usefulness or pleasure. A utility function is only a way of representing a preference rankingthat is, a ranking of alternatives with respect to everything relevant to choice. (Hausman, McPherson, and Satz, p. 58)

$$
X=\{a, b, c, d\}
$$

$$
X=\{a, b, c, d\}
$$

$$
\begin{aligned}
& P=\{(a, c),(a, d),(c, d),(b, c),(b, d)\} \text { and } \\
& I=\{(a, a),(a, b),(b, a),(b, b),(c, c),(d, d)\}
\end{aligned}
$$

$$
X=\{a, b, c, d\}
$$

$$
\begin{aligned}
& P=\{(a, c),(a, d),(c, d),(b, c),(b, d)\} \text { and } \\
& I=\{(a, a),(a, b),(b, a),(b, b),(c, c),(d, d)\}
\end{aligned}
$$

$$
X=\{a, b, c, d\}
$$

$$
X=\{a, b, c, d\}
$$

$$
X=\{a, b, c, d\}
$$

$a b c d$

b $c d$

Decision under certainty

 was same wemo Nanomics Nash consorcetsRational Choice
Theory Pareto Harsanyi ArrowSocial Choice
Rationality

- The decision maker is certain about the consequence that will obtain given each of her available choices.

Feasible Options	Outcomes
a	o_{1}
b	o_{2}
c	o_{3}
\vdots	\vdots

Decision under risk

 Arrowsocial Choice
Rationality
Arrows theocem

- The decision maker is certain about the probabilities associated with each consequence given each of her available choices.

Feasible Options	Outcomes
a	o_{1} with probability p_{1}, o_{2} with probability p_{2}, \ldots
b	o_{1} with probability q_{1}, o_{2} with probability q_{2}, \ldots
c	o_{1} with probability r_{1}, o_{2} with probability r_{2}, \ldots
\vdots	\vdots

Lotteries

 mest Game theory ioms Nash consorcetss Rational Choice Theory ParetoHarsanyi ArrowSocial Choice
Rationality

Suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of outcomes.
A lottery over X is a tuple $\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]$ where $\sum_{i} p_{i}=1$.

Lotteries

PoliticS .awnill tive mass Game theoryouns
 Arrowsocial Rnalice

Suppose that $X=\left\{x_{1}, \ldots, x_{n}\right\}$ is a set of outcomes.
A lottery over X is a tuple $\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]$ where $\sum_{i} p_{i}=1$.

Expected Value of a Lottery

 Mas semen wey Arrowsocial Rality

Suppose that the outcomes of a lottery are monetary values. So, $L=\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$, where each x_{i} is an amount of money. The expected value of L is:

$$
\begin{aligned}
E V\left(\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]\right) & =p_{1} \times x_{1}+\cdots+p_{n} \times x_{n} \\
& =\sum_{i=1}^{n} p_{i} \times x_{i}
\end{aligned}
$$

Expected Value of a Lottery

等 Nash Condorcets Paradox ECORational Choice Theory ParetoH Harsanyi Arrowsocial Cholice

Suppose that the outcomes of a lottery are monetary values. So, $L=\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$, where each x_{i} is an amount of money. The expected value of L is:

$$
\begin{aligned}
E V\left(\left[x_{1}: p_{1}, \ldots, x_{n}: p_{n}\right]\right) & =p_{1} \times x_{1}+\cdots+p_{n} \times x_{n} \\
& =\sum_{i=1}^{n} p_{i} \times x_{i}
\end{aligned}
$$

E.g., if $L=[\$ 100: 0.55, \$ 50: 0.25, \$ 0: 0.20]$, then

$$
E V(L)=0.55 * 100+0.25 * 50+0.2 * 0=67.5
$$

You are given a choice between two lotteries L_{1} and L_{2}. The outcome of the lotteries is determined by flipping a fair coin. The payoff for the two lotteries are given in the following table:

	Heads	Tails
L_{1}	$\$ 1 \mathrm{M}$	$\$ 1 \mathrm{M}$
L_{2}	$\$ 3 \mathrm{M}$	$\$ 0$

Which of the two lotteries would you choose?

1. L_{1}
2. L_{2}
3. I am indifferent between the two lotteries
