PHPE 400 Individual and Group Decision Making

Eric Pacuit University of Maryland pacuit.org

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Neutrality	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pareto	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Neutrality	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pareto	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Condorcet Winner	—	—	—	—	\checkmark	\checkmark	\checkmark
Condorcet Loser	—	\checkmark	\checkmark	\checkmark	\checkmark	_	\checkmark

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Neutrality	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pareto	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Condorcet Winner	—	—	—	—	\checkmark	\checkmark	\checkmark
Condorcet Loser	—	\checkmark	\checkmark	\checkmark	\checkmark	—	\checkmark
Monotonicity	\checkmark	\checkmark	—	—	\checkmark	\checkmark	\checkmark
Positive Involvement	\checkmark	\checkmark	\checkmark	_	—	\checkmark	\checkmark
Multiple Districts	\checkmark	\checkmark	_	_	_	_	

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Neutrality	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Pareto	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Condorcet Winner	—	—	—	—	\checkmark	\checkmark	\checkmark
Condorcet Loser	—	\checkmark	\checkmark	\checkmark	\checkmark	—	\checkmark
Monotonicity	\checkmark	\checkmark	—	—	\checkmark	\checkmark	\checkmark
Positive Involvement	\checkmark	\checkmark	\checkmark	_	—	\checkmark	\checkmark
Multiple Districts	\checkmark	\checkmark	_	_	_	_	_
Immunity to Spoilers	_	_	_	_	_	\checkmark	\checkmark

Multiple-Districts Paradox

Multiple-Districts: If a candidate wins in each district, then that candidate should also win when the districts are merged.

Multiple-Districts Paradox

Multiple-Districts Paradox

5

Multiple-Districts Paradox

 \blacktriangleright {*a*, *b*, *c*} are the winners in the left profile (assuming Anonymity and Neutrality)

h

- ▶ *b* is the Condorcet winner in the right profile
- ▶ *a* is the Condorcet winner in the combined profiles

5

Multiple-Districts Paradox

a b c b c a b a

h

- ▶ *b* is the Condorcet winner in the right profile
- ► *a* is the Condorcet winner in the combined profiles

а

So, any Condorcet consistent voting method violates the Multiple-Districts Paradox.

Referendum Paradox

D_1	D_2	D_3	D_4	D_5
Yes	Yes	No	No	No
No	Yes	Yes	No	No
Yes	No	Yes	No	No

H. Nurmi (1998). *Voting paradoxes and referenda*. Social Choice and Welfare, Vol. 15, No. 3, pp. 333-350.

H. Dindar, G. Laffond and J. Laine (2017). *The strong referendum paradox*. Quality & Quantity: International Journal of Methodology, 51, pp. 1707 - 1731.

Referendum Paradox

► No is the majority outcome overall.

H. Nurmi (1998). *Voting paradoxes and referenda*. Social Choice and Welfare, Vol. 15, No. 3, pp. 333-350.

H. Dindar, G. Laffond and J. Laine (2017). *The strong referendum paradox*. Quality & Quantity: International Journal of Methodology, 51, pp. 1707 - 1731.

Referendum Paradox

- ► No is the majority outcome overall.
- Yes wins a majority of the districts: The majority outcome in D₁, D₂, and D₃ is Yes and the majority outcome in D₄ and D₅ is No.

H. Nurmi (1998). *Voting paradoxes and referenda*. Social Choice and Welfare, Vol. 15, No. 3, pp. 333-350.

H. Dindar, G. Laffond and J. Laine (2017). *The strong referendum paradox*. Quality & Quantity: International Journal of Methodology, 51, pp. 1707 - 1731.

Electoral College

D. DeWitt and T. Schwartz (2016). *A Calamitous Compact*. Political Science & Politics, Volume 49, Special Issue 4: Elections in Focus, pp. 791 - 796.

J. R. Koza (2016). *A Not-So-Calamitous Compact: A Response to DeWitt and Schwartz*. Political Science & Politics, Volume 49, Special Issue 4: Elections in Focus, pp. 797 - 804.

The Social Choice Model

Notation

- *V* is a finite set of voters (assume that $V = \{1, 2, 3, ..., n\}$)
- ► *X* is a (typically finite) set of alternatives, or candidates
- A relation on X is a linear order if it is transitive, irreflexive, and complete (hence, acyclic)
- L(X) is the set of all linear orders over the set X
- ► *O*(*X*) is the set of all reflexive and transitive relations over the set *X* (i.e., rankings that allow ties)

Notation

A profile for the set of voters V is a sequence of linear orders over X, one for each voter in V.

E.g., $\mathbf{P} = (a \ b \ c, b \ c \ a, c \ a \ b)$ is a profile on three candidates for three voters, the first voter's ranking is $a \ b \ c$ (a is strictly preferred to b and strictly preferred to c)

• $L(X)^V$ is the set of all **profiles** for the voters V (similarly for $O(X)^V$)

Preference Aggregation Methods

Social Welfare Function: $f : \mathcal{D} \to O(X)$, where $\mathcal{D} \subseteq L(X)^V$

Preference Aggregation Methods

Social Welfare Function: $f : \mathcal{D} \to O(X)$, where $\mathcal{D} \subseteq L(X)^V$

Comments

- *D* is the *domain* of the function: it is the set of elections
- Social Welfare Functions are *decisive*: every profile P in the domain is associated with exactly one ordering over the candidates
- ► For each profile **P**, the ranking *f*(**P**) is called the **social ordering**

Social Ranking $k f(\mathbf{P}) r f(\mathbf{P}) t$

Social Ranking k r t

Social Ranking *k r t* Majority Ordering, Copeland, Borda

Social Ranking *k r t* Majority Ordering, Copeland, Borda *k t r*

Social RankingMajority Ordering, Copeland, Borda $k \ r \ t$ Minimize the maximum loss

Social Ranking
k r tMajority Ordering, Copeland, Bordak t rMinimize the maximum lossr k t

Social Ranking k r t

- Majority Ordering, Copeland, Borda
- *k t r* Minimize the maximum loss
- *r k t* Instant Runoff

Social Ranking

- *k r t* Majority Ordering, Copeland, Borda
- k t r Minimize the maximum loss
- *r k t* Instant Runoff
- t r k

Social Ranking

- *k r t* Majority Ordering, Copeland, Borda
- *k t r* Minimize the maximum loss
- *r k t* Instant Runoff
- *t r k* Plurality scores

Examples

 $Borda(\mathbf{P}) = \geq_{Bc}$ where $a \geq_{Bc} b$ provided that the Borda score of a is greater than or equal to the Borda score for b.

(Note that \geq_{Bc} may not be a linear order)

Examples

 $Borda(\mathbf{P}) = \geq_{Bc}$ where $a \geq_{Bc} b$ provided that the Borda score of a is greater than or equal to the Borda score for b.

(Note that \geq_{Bc} may not be a linear order)

 $Plurality(\mathbf{P}) = \ge_{Pl}$ where $a \ge_{Pl} b$ provided that the Plurality score of a is greater than or equal to the Plurality score for b.

(Note that \geq_{Pl} may not be a linear order)

Examples

 $Borda(\mathbf{P}) = \geq_{Bc}$ where $a \geq_{Bc} b$ provided that the Borda score of a is greater than or equal to the Borda score for b.

(Note that \geq_{Bc} may not be a linear order)

 $Plurality(\mathbf{P}) = \ge_{Pl}$ where $a \ge_{Pl} b$ provided that the Plurality score of a is greater than or equal to the Plurality score for b.

(Note that \geq_{Pl} may not be a linear order)

 $Maj(\mathbf{P}) = >_{\mathbf{P}}^{M}$ where $a >_{\mathbf{P}}^{M} b$ provided that $Margin_{\mathbf{P}}(a, b) > 0$ (*Problem:* $>_{\mathbf{P}}^{M}$ may not be transitive)

Arrow's Theorem

Let *X* be a finite set with *at least three elements* and *V* a finite set of n voters.

Social Welfare Function: $f : \mathcal{D} \to O(X)$ where $\mathcal{D} \subseteq L(X)^V$

Arrow's Theorem

Let *X* be a finite set with *at least three elements* and *V* a finite set of n voters.

Social Welfare Function: $f : \mathcal{D} \to O(X)$ where $\mathcal{D} \subseteq L(X)^V$

- ► For a profile P, f(P) is the social ranking given P, and we write a f(P) b when society ranks a at least as high as b.
- For a profile **P**, we write \mathbf{P}_i for voter *i*'s ranking.
- O(X) is the set of transitive and complete relations on *X*.

Arrow's Impossibility Theorem

"For an area of study to become a recognized field, or even a recognized subfield, two things are required: It must be seen to have coherence, and it must be seen to have depth. The former often comes gradually, but the latter can arise in a single flash of brilliance....With social choice theory, there is little doubt as to the seminal result that made it a recognized field of study: Arrow's impossibility theorem."

A. Taylor, Social Choice and the Mathematics of Manipulation

Arrow's Impossibility Theorem

K. Arrow (1951). *Social Choice & Individual Values*. Yale University Press.

E. Maskin and A. Sen, editors (2014). *The Arrow Impossibility Theorem*. Columbia University Press.

M. Morreau (2019). *Arrow Impossibility Theorem*. Stanford Encyclopedia of Philosophy.

P. Suppes (2015). *The pre-history of Kenneth Arrow's social choice and individual values*. Social Choice and Welfare 25(2), pp. 319-326.