PHPE 400
 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Politics case maximi
Rease theorem che "nimotwee Philosophy Game The

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- \max	Split Cycle
Anonymity	\checkmark						
Neutrality	\checkmark						
Pareto	\checkmark						

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- \max	Split Cycle
Anonymity	\checkmark						
Neutrality	\checkmark						
Pareto	\checkmark						
Condorcet Winner	-	-	-	-	\checkmark	\checkmark	\checkmark
Condorcet Loser	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark						
Neutrality	\checkmark						
Pareto	\checkmark						
Condorcet Winner	-	-	-	-	\checkmark	\checkmark	\checkmark
Condorcet Loser	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
Monotonicity	\checkmark	\checkmark	-	-	\checkmark	\checkmark	\checkmark
Positive Involvement	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Multiple Districts	\checkmark	\checkmark	-	-	-	-	-

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark						
Neutrality	\checkmark						
Pareto	\checkmark						
Condorcet Winner	-	-	-	-	\checkmark	\checkmark	\checkmark
Condorcet Loser	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
Monotonicity	\checkmark	\checkmark	-	-	\checkmark	\checkmark	\checkmark
Positive Involvement	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Multiple Districts	\checkmark	\checkmark	-	-	-	-	-
Immunity to Spoilers	-	-	-	-	-	\checkmark	\checkmark

Multiple-Districts Paradox

 wens nemen wem Economics NashRational Choice Theory ParetoHarsany
ArrowS Social Choice Theory Sen Arrow Social Choice

Multiple-Districts: If a candidate wins in each district, then that candidate should also win when the districts are merged.

Multiple-Districts Paradox

 Ms. Nash conorecers fagotet RCONOMICS Arrow Social Choice
Ratrows theonem

Multiple-Districts Paradox

Politics (wivill

Arrow Social Choice
Rationality
Arrows theocem

Multiple-Districts Paradox

 Whane hrow Economics Nash Condorcets Paradox LCO Cheory ParetoHarsanyiRational Choice Theory
ArrowSocial Choice TheorySen ArrowSocial Choice
Rationality
Arrows theocem

- $\{a, b, c\}$ are the winners in the left profile (assuming Anonymity and Neutrality)
- b is the Condorcet winner in the right profile
- a is the Condorcet winner in the combined profiles

Multiple-Districts Paradox

 Whand hrome Economics Nash Condorcets ParadoxRational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen ArrowSocial Choice
Rationality
arrows theocem

- $\{a, b, c\}$ are the winners in the left profile (assuming Anonymity and Neutrality)
- b is the Condorcet winner in the right profile
- a is the Condorcet winner in the combined profiles

So, any Condorcet consistent voting method violates the Multiple-Districts Paradox.

Referendum Paradox

 Arrowsocial Choice
Rationality
Arrows theorem

D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
Yes	Yes	No	No	No
No	Yes	Yes	No	No
Yes	No	Yes	No	No

H. Nurmi (1998). Voting paradoxes and referenda. Social Choice and Welfare, Vol. 15, No. 3, pp. 333-350.
H. Dindar, G. Laffond and J. Laine (2017). The strong referendum paradox. Quality \& Quantity: International Journal of Methodology, 51, pp. 1707-1731.

Referendum Paradox

D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
Yes	Yes	No	No	No
No	Yes	Yes	No	No
Yes	No	Yes	No	No

- No is the majority outcome overall.
H. Nurmi (1998). Voting paradoxes and referenda. Social Choice and Welfare, Vol. 15, No. 3, pp. 333-350.
H. Dindar, G. Laffond and J. Laine (2017). The strong referendum paradox. Quality \& Quantity: International Journal of Methodology, 51, pp. 1707-1731.

Referendum Paradox

 Nas shemen moconomics Rational Choice Theory ParetoHarsanyiArrowSocial Choice TheorySen Arrow Rationality

D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
Yes	Yes	No	No	No
No	Yes	Yes	No	No
Yes	No	Yes	No	No

- No is the majority outcome overall.
- Yes wins a majority of the districts: The majority outcome in D_{1}, D_{2}, and D_{3} is Yes and the majority outcome in D_{4} and D_{5} is No.
H. Nurmi (1998). Voting paradoxes and referenda. Social Choice and Welfare, Vol. 15, No. 3, pp. 333-350.
H. Dindar, G. Laffond and J. Laine (2017). The strong referendum paradox. Quality \& Quantity: International Journal of Methodology, 51, pp. 1707-1731.

Electoral College

 Mas semen wey $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
D. DeWitt and T. Schwartz (2016). A Calamitous Compact. Political Science \& Politics, Volume 49, Special Issue 4: Elections in Focus, pp. 791-796.
J. R. Koza (2016). A Not-So-Calamitous Compact: A Response to DeWitt and Schwartz. Political Science \& Politics, Volume 49, Special Issue 4: Elections in Focus, pp. 797-804.

Voters Rankings

Voters Rankings

The Social Choice Model

Notation

 was same wemo Nancomics Nash condional Choice' Theory ParetoHarsany Arrowsocial Cholice- V is a finite set of voters (assume that $V=\{1,2,3, \ldots, n\}$)
- X is a (typically finite) set of alternatives, or candidates
- A relation on X is a linear order if it is transitive, irreflexive, and complete (hence, acyclic)
- $L(X)$ is the set of all linear orders over the set X
- $O(X)$ is the set of all reflexive and transitive relations over the set X (i.e., rankings that allow ties)

Notation

 Arrow Rationality

- A profile for the set of voters V is a sequence of linear orders over X, one for each voter in V.
E.g., $\mathbf{P}=(a b c, b c a, c a b)$ is a profile on three candidates for three voters, the first voter's ranking is $a b c(a$ is strictly preferred to b and strictly preferred to c and b is strictly preferred to c)
- $L(X)^{V}$ is the set of all profiles for the voters V (similarly for $O(X)^{V}$)

Preference Aggregation Methods

 Mens shemen wemo Economics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Social Welfare Function: $f: \mathcal{D} \rightarrow O(X)$, where $\mathcal{D} \subseteq L(X)^{V}$

Preference Aggregation Methods

 wans rame ther Arrow Sociaionality

Social Welfare Function: $f: \mathcal{D} \rightarrow O(X)$, where $\mathcal{D} \subseteq L(X)^{V}$
Comments

- \mathcal{D} is the domain of the function: it is the set of elections
- Social Welfare Functions are decisive: every profile \mathbf{P} in the domain is associated with exactly one ordering over the candidates
- For each profile \mathbf{P}, the ranking $f(\mathbf{P})$ is called the social ordering

$$
\begin{array}{ccc}
40 & 35 & 25 \\
\hline t & r & k \\
k & k & r \\
r & t & t
\end{array}
$$

Social Ranking
$k f(\mathbf{P}) r f(\mathbf{P}) t$

$$
\begin{array}{ccc}
40 & 35 & 25 \\
\hline t & r & k \\
k & k & r \\
r & t & t
\end{array}
$$

Social Ranking
$k r t$

$$
\begin{array}{ccc}
40 & 35 & 25 \\
\hline t & r & k \\
k & k & r \\
r & t & t
\end{array}
$$

Social Ranking
$k r t \quad$ Majority Ordering, Copeland, Borda

$$
\begin{array}{ccc}
40 & 35 & 25 \\
\hline t & r & k \\
k & k & r \\
r & t & t
\end{array}
$$

Social Ranking
$k r t \quad$ Majority Ordering, Copeland, Borda $k t r$

d, Borda

40	35	25
t	r	k
k	k	r
r	t	t

Social Ranking
$k r t \quad$ Majority Ordering, Copeland, Borda
$k t r \quad$ Minimize the maximum loss

$$
\begin{array}{ccc}
40 & 35 & 25 \\
\hline t & r & k \\
k & k & r \\
r & t & t
\end{array}
$$

Social Ranking
$r k t$

$k r t \quad$ Majority Ordering, Copeland, Borda
$k t r \quad$ Minimize the maximum loss
d, Borda

40	35	25
t	r	k
k	k	r
r	t	t

Social Ranking
$k r t \quad$ Majority Ordering, Copeland, Borda
$k t r \quad$ Minimize the maximum loss
$r k t$
Instant Runoff

$$
\begin{array}{ccc}
40 & 35 & 25 \\
\hline t & r & k \\
k & k & r \\
r & t & t
\end{array}
$$

Social Ranking
$k r t \quad$ Majority Ordering, Copeland, Borda
$r k t \quad$ Instant Runoff
$t r k$

$k t r \quad$ Minimize the maximum loss

40	35	25
t	r	k
k	k	r
r	t	t

Social Ranking
$k r t \quad$ Majority Ordering, Copeland, Borda
$k t r \quad$ Minimize the maximum loss
$r k t \quad$ Instant Runoff
$t r k \quad$ Plurality scores

Examples

Arrow Social Choice TheorySen
$\operatorname{Bord} a(\mathbf{P})=\geq_{B c}$ where $a \geq_{B c} b$ provided that the Borda score of a is greater than or equal to the Borda score for b.
(Note that $\geq_{B c}$ may not be a linear order)

Examples

 Nash Condorcets Parresox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice Theory Sen Arrow Social Choice
Rationality
arrows theocem
$\operatorname{Bord} a(\mathbf{P})=\geq_{B c}$ where $a \geq_{B c} b$ provided that the Borda score of a is greater than or equal to the Borda score for b.
(Note that $\geq_{B c}$ may not be a linear order)
$\operatorname{Plurality}(\mathbf{P})=\geq_{P l}$ where $a \geq_{P l} b$ provided that the Plurality score of a is greater than or equal to the Plurality score for b.
(Note that $\geq_{P l}$ may not be a linear order)

Examples

$\operatorname{Bord} a(\mathbf{P})=\geq_{B c}$ where $a \geq_{B c} b$ provided that the Borda score of a is greater than or equal to the Borda score for b.
(Note that $\geq_{B c}$ may not be a linear order)
$\operatorname{Plurality}(\mathbf{P})=\geq_{P l}$ where $a \geq_{P l} b$ provided that the Plurality score of a is greater than or equal to the Plurality score for b.
(Note that $\geq_{P l}$ may not be a linear order)
$\operatorname{Maj}(\mathbf{P})=>_{\mathbf{P}}^{M}$ where $a>_{\mathbf{P}}^{M} b$ provided that $\operatorname{Margin}_{\mathbf{P}}(a, b)>0$
(Problem: $>_{\mathbf{P}}^{M}$ may not be transitive)

Arrow's Theorem

 Nens shemenem Economics
$\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Let X be a finite set with at least three elements and V a finite set of n voters.

Social Welfare Function: $f: \mathcal{D} \rightarrow O(X)$ where $\mathcal{D} \subseteq L(X)^{V}$

Arrow's Theorem

 Mas seme temo Nash consorcets ParaodRational Choice Theory ParetoHarsany Arrow Rationality

Let X be a finite set with at least three elements and V a finite set of n voters.

Social Welfare Function: $f: \mathcal{D} \rightarrow O(X)$ where $\mathcal{D} \subseteq L(X)^{V}$

- For a profile $\mathbf{P}, f(\mathbf{P})$ is the social ranking given \mathbf{P}, and we write $a f(\mathbf{P}) b$ when society ranks a at least as high as b.
- For a profile \mathbf{P}, we write \mathbf{P}_{i} for voter i 's ranking.
- $O(X)$ is the set of transitive and complete relations on X.

Arrow's Impossibility Theorem

"For an area of study to become a recognized field, or even a recognized subfield, two things are required: It must be seen to have coherence, and it must be seen to have depth. The former often comes gradually, but the latter can arise in a single flash of brilliance....With social choice theory, there is little doubt as to the seminal result that made it a recognized field of study: Arrow's impossibility theorem."
A. Taylor, Social Choice and the Mathematics of Manipulation

Arrow's Impossibility Theorem

K. Arrow (1951). Social Choice E Individual Values. Yale University Press.

> E. Maskin and A. Sen, editors (2014). The Arrow Impossibility Theorem. Columbia University Press.
M. Morreau (2019). Arrow Impossibility Theorem. Stanford Encyclopedia of Philosophy.
P. Suppes (2015). The pre-history of Kenneth Arrow's social choice and individual values. Social Choice and Welfare 25(2), pp. 319-326.

