PHPE 400
 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Politics case maximi
Rease theorem che "nimotwee Philosophy Game The

Do the previous arguments for majority rule apply when there are more than 2 candidates? No!
\checkmark Group decision problems often exhibit a combinatorial structure. For example, voting on a number of yes/no issues in a referendum, or voting on different interconnected issues.

- As we have seen, there are many reasonable voting methods that generalize Majority Rule for more than 2 candidates. Is there a voting method that satisfies all principles of group decision making?

Principles of group decision making

 wans rame therneconomics ArrowSocial Choice TheorySen

- Anonymity: If voters swap their ballots, then the outcome is unaffected.
- Neutrality: If candidates are exchanged in every ranking, then the outcome changes accordingly.
- Resoluteness: Always elect a single winner.

Condorcet Triples and Resoluteness

n	n	n	n	n	n
a	b	c			c
b	c	a	c	b	a
c	a	b	b	a	c

Fact. In both profiles, any voting method satisfying anonymity and neutrality must select all candidates as winners

1	1	1
a	b	c
b	c	a
c	a	b

Consider $\mathbf{P}=(a b c, b c a, c a b)$ and suppose that $F(a b c, b c a, c a b)=\{a\}$

Suppose that $F(a \mid b c, b \subset a, c a b)=\{a\}$

Suppose that $F(a \mid b c, b \subset a, c a b)=\{a\}$

1. Swap a and b in everyone's rankings in the given profile. Then, by Neutrality:

$$
F(\boldsymbol{b} \boldsymbol{a} c, \boldsymbol{a} c \boldsymbol{b}, c \boldsymbol{b} \boldsymbol{a})=\{b\}
$$

Suppose that $F(a \mid b c, b \subset a, c a b)=\{a\}$

1. Swap a and b in everyone's rankings in the given profile. Then, by Neutrality:

$$
F(b \boldsymbol{b} c, \boldsymbol{a} c \boldsymbol{b}, c \boldsymbol{b} \boldsymbol{a})=\{b\}
$$

2. Swap b and c in everyone's rankings in the profile from step 1 . Then, by Neutrality:

$$
F(c a b, a b c, b \mid c a)=\{c\}
$$

Suppose that $F(a \mid b c, b \subset a, c a b)=\{a\}$

1. Swap a and b in everyone's rankings in the given profile. Then, by Neutrality:

$$
F(b \sqrt{b} c, \boldsymbol{a} c \boldsymbol{b}, c \bar{b} \boldsymbol{a})=\{b\}
$$

2. Swap b and c in everyone's rankings in the profile from step 1 . Then, by Neutrality:

$$
F(c a b, a b|c, b| c a)=\{c\}
$$

3. By Anonymity, the original profile and the profile in step 3 must have the same winners:

$$
F(a b c, b c a, c a b)=F(c a b, a b c, b c a)
$$

Suppose that $F(\boldsymbol{a}|\vec{b}| c, \vec{b}|c| a, c|a| b)=\{\boldsymbol{a}\}$

1. Swap a and b in everyone's rankings in the given profile. Then, by Neutrality:

$$
F(\bar{b} \boldsymbol{a} c, \boldsymbol{a} c \boldsymbol{b}, c \boldsymbol{b} \boldsymbol{a})=\{b\}
$$

2. Swap b and c in everyone's rankings in the profile from step 1 . Then, by Neutrality:

$$
F(c a b, a b c, b \mid a)=\{c\}
$$

3. By Anonymity, the original profile and the profile in step 3 must have the same winners:

$$
F(a b c, b c a, c a b)=F(c a b, a b c, b c a)
$$

4. 1 and 2 contradict 3 since
$F(a b c, b c a, c a b)=\{a\} \neq\{c\}=F(c a b, a b c, b c a)$.

So, tie-breaking cannot be built-in to a voting method: there is no voting method that satisfies Anonymity, Neutrality and always elects a single winner.

Recall Weak Positive Responsiveness

 Nash Rational Choice Theory ParetoHarsany Arrow Rationality

- F satisfies weak positive responsiveness if for any profiles \mathbf{P} and \mathbf{P}^{\prime}, if

1. $a \in F(\mathbf{P})$ (a is a winner in \mathbf{P} according to F) and
2. \mathbf{P}^{\prime} is obtained from \mathbf{P} by one voter who ranked a uniquely last in \mathbf{P} switching to ranking a uniquely first in \mathbf{P}^{\prime},
then $F\left(\mathbf{P}^{\prime}\right)=\{a\}$ (a is the unique winner in \mathbf{P}^{\prime} according to F).

Monotonicity

Arowsocil chice theorysen Ratitionaility
Arous

A candidate receiving more "support" shouldn't maker her worse off.

Monotonicity

A candidate receiving more "support" shouldn't maker her worse off.

More-is-Less Paradox: If a candidate c is elected under a given a profile of rankings of the competing candidates, it is possible that, ceteris paribus, c may not be elected if some voter(s) raise c in their rankings.
P. Fishburn and S. Brams. Paradoxes of Preferential Voting. Mathematics Magazine (1983).

More-is-Less Paradox: Ranked Choice

 mass Game theoryowns Arrow Rationality

6	5	4	2
a	c	b	b
b	a	c	a
c	b	a	c

6	5	4	2
a	c	b	a
b	a	c	b
c	b	a	c

More-is-Less Paradox: Ranked Choice

 mass Game theoryowns Nash condorcets Paradox ECO ParetoHarsanyiRational Choice Theory
ArrowSocial Choice TheorySen

Arrow Sociationality

6	5	4	2
a	c	b	b
b	a	c	a
c	b	a	c

6	5	4	2
a	c	b	a
b	a	c	b
c	b	a	c

More-is-Less Paradox: Ranked Choice

 Game Theory Downsmars Theorem Guss
Nash Consorestsp Paratox ECOMOMICS Nash Consorcet's Paradot ECO OPM Rational Choice Theory ArrowSocial Choice
Rationality

6	5	4	2
a	c	b	b
b	a	c	a
a	b	a	c

Ranked Choice Winner: a

6	5	4	2
a	c	b	a
b	a	c	b
c	b	a	c

$c \quad b \quad a \quad c$

More-is-Less Paradox: Ranked Choice

 Mers Game Theoryowis Nonchomics Nash tonarects eised Thery Peretobarsany Arrowsocial Rality

Ranked Choice Winner: a

Ranked Choice Winner: c

More-is-Less Paradox: Ranked Choice

 Game Theory yownsMars Theorem Gexis
Nash Consorcelts Parcesox ECOMOMNICS
Rational Choice Theory Pareto Harsanyi ArrowSocial Choice

6	5	4	2
a	c	b	b
b	a	c	a
c	b	a	c

Ranked Choice Winner: a

Ranked Choice Winner: c

More on Monotonicity

Key idea: Unequivocal increase in support for a candidate should not result in that candidate going from being a winner to being a loser.

More on Monotonicity

Key idea: Unequivocal increase in support for a candidate should not result in that candidate going from being a winner to being a loser.

1. monotonicity: if a candidate x is a winner given a preference profile \mathbf{P}, and \mathbf{P}^{\prime} is obtained from \mathbf{P} by one voter moving x up in their ranking, then x should still be a winner given \mathbf{P}^{\prime}.

Positive and Negative Involvement

 wassemencem Arrow Sociaionality
Ratrows theocem
Consider the following perverse responses, dubbed Strong No Show Paradoxes (cf. Fishburn and Brams 1983), when a coalition C of voters comes to the polls:

Positive and Negative Involvement

 Mas seme temo conomics Arrow Social Choice
Rationnality
Arrows theorem
Consider the following perverse responses, dubbed Strong No Show Paradoxes (cf. Fishburn and Brams 1983), when a coalition C of voters comes to the polls:

1. Had the voters in C stayed home, candidate a would have won; and everyone in C ranked a first; but this caused a to lose;

Positive and Negative Involvement

Consider the following perverse responses, dubbed Strong No Show Paradoxes (cf. Fishburn and Brams 1983), when a coalition C of voters comes to the polls:

1. Had the voters in C stayed home, candidate a would have won; and everyone in C ranked a first; but this caused a to lose;
2. Had the voters in C stayed home, candidate a would have lost; and everyone in C ranked a last; but this caused a to win.

Positive and Negative Involvement

Consider the following perverse responses, dubbed Strong No Show Paradoxes (cf. Fishburn and Brams 1983), when a coalition C of voters comes to the polls:

1. Had the voters in C stayed home, candidate a would have won; and everyone in C ranked a first; but this caused a to lose;
2. Had the voters in C stayed home, candidate a would have lost; and everyone in C ranked a last; but this caused a to win.

Following Saari (1995), we call 1 a violation of Positive Involvement and 2 a violation of Negative Involvement.

Positive and Negative Involvement

Consider the following perverse responses, dubbed Strong No Show Paradoxes (cf. Fishburn and Brams 1983), when a coalition C of voters comes to the polls:

1. Had the voters in C stayed home, candidate a would have won; and everyone in C ranked a first; but this caused a to lose;
2. Had the voters in C stayed home, candidate a would have lost; and everyone in C ranked a last; but this caused a to win.

Following Saari (1995), we call 1 a violation of Positive Involvement and 2 a violation of Negative Involvement.
People are often shocked to learn that these are possible with standard voting methods: Instant Runoff violates Negative Involvement, while some Condorcet methods violate both versions.

Violations of Negative Involvement

 wans rame therneconomics Nash conal Choice' Theory ParetoHarsany Arrow RationalityRemarkably, in the 2022 Alaska election in which Peltola won, removing anywhere between 5,170 and 8,406 voters with the ranking

$$
\text { Palin }>\text { Begich }>\text { Peltola }
$$

leads to Begich winning, so by ranking Peltola last, they "caused" her to win!

Violations of Negative Involvement

Remarkably, in the 2022 Alaska election in which Peltola won, removing anywhere between 5,170 and 8,406 voters with the ranking

$$
\text { Palin }>\text { Begich }>\text { Peltola }
$$

leads to Begich winning, so by ranking Peltola last, they "caused" her to win!

For details, see https:/ / github.com/voting-tools/election-analysis or Smith and Navratil's (2022) paper, "If Peltola had more votes, she would have lost."

Coombs violates Positive Involvement

 Rational Choice Theory ParetoHarsanyi
ArrowSocial Choice TheorySen

Arrows theovem

$$
\begin{array}{lllllll}
2 & 2 & 1 & 1 & 2 & 1 & 1 \\
\hline c & b & d & d & c & a & b \\
a & a & c & a & b & d & d \\
b & c & b & c & d & b & a \\
d & d & a & b & a & c & c
\end{array}
$$

Coombs winner: $\{b\}$
(the order of elimination is d, c)

2	2	1	1	2	1	1	1
c	b	d	d	c	a	b	b
a	a	c	a	b	d	d	d
b	c	b	c	d	b	a	c
d	d	a	b	a	c	c	a

Coombs winner: $\{c\}$
(a and d are tied for the most last place votes)

Copeland violates Positive Involvement

 Nash condorcets Paradox
Rational Choice Theory ParetoHarsanyi
ArrowSocial Choice TheorySen Arrow
Rationality
Arrecrem

$$
\begin{array}{lll}
2 & 1 & 1 \\
\hline e & c & a \\
c & b & d \\
b & a & b \\
a & d & e \\
d & e & c
\end{array}
$$

Copeland winners: $\{c\}$

Copeland winners: $\{e\}$

More Principles

 wassemencem Arrowsocial Cholice

Pareto/Unanimity: In any profile \mathbf{P}, if every voter ranks x strictly above y, then y is not a winner.

Every voting method we have studied satisfies Pareto.

More Principles

 wans same weme Economics Nash consores Choice Theory ParetoHarsanyi Arrowsocial CholiceCondorcet: In any profile \mathbf{P}, if x is a Condorcet winner, then x is the unique winner.

Condorcet Loser: In any profile \mathbf{P}, if x is a Condorcet loser, then x is not a winner.

More Principles

 Nash conoracets fasabo
Rational Choice Theory Pareto Harsanyi ArrowSocial Choice
Rationality

Condorcet: In any profile \mathbf{P}, if x is a Condorcet winner, then x is the unique winner.

Condorcet Loser: In any profile \mathbf{P}, if x is a Condorcet loser, then x is not a winner.

Plurality violates both the Condorcet Winner and Condorcet Loser principles.

2	2	2	1
c	b	a	a
b	c	c	b
a	a	b	c

Plurality Winners: $\{a\}$ Condorcet Winner: c Condorcet Loser: a

Multiple-Districts Paradox

Multiple-Districts: If a candidate wins in each district, then that candidate should also win when the districts are merged.

Multiple-Districts Paradox

Multiple-Districts: If a candidate wins in each district, then that candidate should also win when the districts are merged.

- $\{a, b, c\}$ are the winners in the left profile (assuming Anonymity and Neutrality)
- b is the Condorcet winner in the right profile
- a is the Condorcet winner in the combined profiles

Multiple-Districts Paradox

Multiple-Districts: If a candidate wins in each district, then that candidate should also win when the districts are merged.

- $\{a, b, c\}$ are the winners in the left profile (assuming Anonymity and Neutrality)
- b is the Condorcet winner in the right profile
- a is the Condorcet winner in the combined profiles

So, any Condorcet consistent voting method violates the Multiple-Districts Paradox.

Referendum Paradox

 Arrowsocial Choice
Rationality
Arrows theorem

D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
Yes	Yes	No	No	No
No	Yes	Yes	No	No
Yes	No	Yes	No	No

H. Nurmi (1998). Voting paradoxes and referenda. Social Choice and Welfare, Vol. 15, No. 3, pp. 333-350.
H. Dindar, G. Laffond and J. Laine (2017). The strong referendum paradox. Quality \& Quantity: International Journal of Methodology, 51, pp. 1707-1731.

Referendum Paradox

D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
Yes	Yes	No	No	No
No	Yes	Yes	No	No
Yes	No	Yes	No	No

- No is the majority outcome overall.
H. Nurmi (1998). Voting paradoxes and referenda. Social Choice and Welfare, Vol. 15, No. 3, pp. 333-350.
H. Dindar, G. Laffond and J. Laine (2017). The strong referendum paradox. Quality \& Quantity: International Journal of Methodology, 51, pp. 1707-1731.

Referendum Paradox

 Nas shemen moconomics Rational Choice Theory ParetoHarsanyiArrowSocial Choice TheorySen Arrow Rationality

D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
Yes	Yes	No	No	No
No	Yes	Yes	No	No
Yes	No	Yes	No	No

- No is the majority outcome overall.
- Yes wins a majority of the districts: The majority outcome in D_{1}, D_{2}, and D_{3} is Yes and the majority outcome in D_{4} and D_{5} is No.
H. Nurmi (1998). Voting paradoxes and referenda. Social Choice and Welfare, Vol. 15, No. 3, pp. 333-350.
H. Dindar, G. Laffond and J. Laine (2017). The strong referendum paradox. Quality \& Quantity: International Journal of Methodology, 51, pp. 1707-1731.

Gerrymandering

Politics
Game Hathynis sheisem PhilOSOQphy
 Nash Consorcetts Paraso Rational Choice Theory Pareto Harsanyi

Arrow Social Choice
Rationality
https://mggg.org/

Electoral College

 Mas semen wey Nasheonal hoied Ther $\underset{\text { Rrrows theorem }}{\text { Ratity }}$D. DeWitt and T. Schwartz (2016). A Calamitous Compact. Political Science \& Politics, Volume 49, Special Issue 4: Elections in Focus, pp. 791-796.
J. R. Koza (2016). A Not-So-Calamitous Compact: A Response to DeWitt and Schwartz. Political Science \& Politics, Volume 49, Special Issue 4: Elections in Focus, pp. 797-804.

Principles

 Mas semen weymenomics Nash onal Choice 'Theory ParetoHarsanyRational Arrow Rationality

Anonymity: If voters swap their ballots, then the outcome is unaffected.
Neutrality: If candidates are exchanged in every ranking, then the outcome changes accordingly.

Pareto: If every voter ranks a strictly above b (i.e., b is dominated by a) then b is not a winner.

Condorcet: When the Condorcet winner exists, then it is the unique winner.
Condorcet Loser: Do not elect the Condorcet loser whenever it exists.

Principles

Monotonicity: if a candidate x is a winner given a preference profile \mathbf{P}, and \mathbf{P}^{\prime} is obtained from \mathbf{P} by one voter moving x up in their ranking, then x should still be a winner given \mathbf{P}^{\prime}.

Positive Involvement: if a candidate x is a winner given \mathbf{P}, and \mathbf{P}^{*} is obtained from \mathbf{P} by adding a new voter who ranks x in first place, then x should still be a winner given \mathbf{P}^{*}.
Multiple-Districts: Suppose that a voting population is divided into districts. If a candidate wins in each district, then that candidate should also win when the districts are merged. NShnemenceme Economics Arow Socil chice Theornsen

Is there a voting method that satisfies all of them?

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- \max	Split Cycle
Anonymity	\checkmark						
Neutrality	\checkmark						
Pareto	\checkmark						

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- \max	Split Cycle
Anonymity	\checkmark						
Neutrality	\checkmark						
Pareto	\checkmark						
Condorcet Winner	-	-	-	-	\checkmark	\checkmark	\checkmark
Condorcet Loser	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- max	Split Cycle
Anonymity	\checkmark						
Neutrality	\checkmark						
Pareto	\checkmark						
Condorcet Winner	-	-	-	-	\checkmark	\checkmark	\checkmark
Condorcet Loser	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
Monotonicity	\checkmark	\checkmark	-	-	\checkmark	\checkmark	\checkmark
Positive Involvement	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Multiple Districts	\checkmark	\checkmark	-	-	-	-	-

	Plurality	Borda	Ranked Choice	Coombs	Cope- land	Mini- \max	Split Cycle
Anonymity	\checkmark						
Neutrality	\checkmark						
Pareto	\checkmark						
Condorcet Winner	-	-	-	-	\checkmark	\checkmark	\checkmark
Condorcet Loser	-	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark
Monotonicity	\checkmark	\checkmark	-	-	\checkmark	\checkmark	\checkmark
Positive Involvement	\checkmark	\checkmark	\checkmark	-	-	\checkmark	\checkmark
Multiple Districts	\checkmark	\checkmark	-	-	-	-	-
Immunity to Spoilers	-	-	-	-	-	\checkmark	\checkmark

