# PHPE 400 <br> Individual and Group Decision Making 

Eric Pacuit<br>University of Maryland<br>pacuit.org

Politics case maximi
Rease theorem che "nimotwee Philosophy Game The

## Iterative Voting Methods

Instant Runoff Voting (Ranked Choice): Iteratively remove all candidates with the fewest number of voters who rank them first, until there is a candidate with a majority of first-place votes. If, at some stage of the removal process, all remaining candidates have the same number of voters who rank them first (so all candidates would be removed), then all remaining candidates are selected as winners.

Coombs: Iteratively remove all candidates with the most number of voters who rank them last, until there is a candidate with a majority of first-place votes. If, at some stage of the removal process, all remaining candidates have the same number of voters who rank them last (so all candidates would be removed), then all remaining candidates are selected as winners.

$$
\begin{array}{llll}
7 & 5 & 4 & 3 \\
\hline a & b & d & c \\
b & c & b & d \\
c & d & c & a \\
d & a & a & b
\end{array}
$$

$$
\begin{array}{llll}
7 & 5 & 4 & 3 \\
\hline a & b & d & c \\
b & c & b & d \\
c & d & c & a \\
d & a & a & b
\end{array}
$$

Instant Runoff winners

$$
\begin{array}{cccc}
7 & 5 & 4 & 3 \\
\hline a & b & d & c \\
b & c & b & d \\
c & d & c & a \\
d & a & a & b
\end{array}
$$

Instant Runoff winners


Instant Runoff winners $d$

$$
\begin{array}{llll}
7 & 5 & 4 & 3 \\
a & b & d & c \\
b & c & b & d \\
c & d & c & a \\
d & a & a & b
\end{array}
$$

Instant Runoff winners $d$
Coombs winners

$\begin{array}{ll}\text { Instant Runoff winners } & d \\ \text { Coombs winners } & b\end{array}$

## 2022 Alaska Special General Election

 Nashe conail Choice Theory ParetoHarsanyi Arrow Rationality

The Ranked Choice, also called Instant Runoff Voting (IRV), winner is Peltola.

- The write-ins are initially removed
- Begich is removed in the first round
- Palin loses to Peltola


## 2022 Alaska Special General Election

 Round 1| Candidate | Votes | Percentage |
| :--- | ---: | ---: |
| Begich, Nick | 53,810 | $28.53 \%$ |
| Palin, Sarah | 58,973 | $31.27 \%$ |
| Peltola, Mary S. | 75,799 | $40.19 \%$ |
| Continuing Ballots Total | $\mathbf{1 8 8 , 5 8 2}$ |  |
| Blanks | 3,412 |  |
| Exhausted | 0 |  |
| Overvotes | 295 |  |
| Remainder Points | 0 |  |
| Non Transferable Total |  | $\mathbf{3 , 7 0 7}$ |

## 2022 Alaska Special General Election

Elimination transfer for candidate Begich, Nick.
53810 ballots have been transferred in the following manner:

| Transferred from | Transferred to | Ballots | Votes |
| :--- | :--- | ---: | ---: |
| Begich, Nick | Palin, Sarah | 27053 | 27,053 |
| Begich, Nick | Peltola, Mary S. | 15467 | 15,467 |
| Begich, Nick | Exhausted | 11243 | 11,243 |
| Begich, Nick | Overvotes | 47 | 47 |

## 2022 Alaska Special General Election

 Nsshame whern Economics Nash comeces emaye ArrowSocial Choice TheorySenRound 2

| Candidate | Votes | Percentage |
| :--- | ---: | ---: |
| Begich, Nick | 0 | $0.00 \%$ |
| Palin, Sarah | 86,026 | $48.52 \%$ |
| Peltola, Mary S. | 91,266 | $51.48 \%$ |
| Continuing Ballots Total | $\mathbf{1 7 7 , 2 9 2}$ |  |
| Blanks | 3,412 |  |
| Exhausted | 11,243 |  |
| Overvotes | 342 |  |
| Remainder Points | 0 |  |
| Non Transferable Total | $\mathbf{1 4 , 9 9 7}$ |  |

Palin, Sarah is eliminated because the candidate was not elected in the last round.

Problem 1: A majority of voters strictly prefer Begich to Peltola.
Problem 2: In fact, Begich is majority preferred to every other candidate, but is not elected.


IRV may not elect the Condorcet winner: The Condorcet winner is Begich, but Peltola was elected.

## Recall Condorcet's Idea

 unsime haw Economics Nash Condorcets Paradox LCO Pheory ParetoHarsanyiRational Choice Theory
ArrowSocial Choice TheorySen
$\underset{\text { Rrrows theorem }}{\text { Ratity }}$

| 3 | 5 | 7 | 6 |
| :--- | :--- | :--- | :--- |
| $a$ | $a$ | $b$ | $c$ |
| $b$ | $c$ | $d$ | $b$ |
| $c$ | $b$ | $c$ | $d$ |
| $d$ | $d$ | $a$ | $a$ |

## Recall Condorcet's Idea

 Menseme heormeronomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

| 3 | 5 | 7 | 6 |
| :--- | :--- | :--- | :--- |
| $a$ | $a$ | $b$ | $c$ |
| $b$ | $c$ | $d$ | $b$ |
| $c$ | $b$ | $c$ | $d$ |
| $d$ | $d$ | $a$ | $a$ |



## Recall Condorcet's Idea

Politics cass tamm imp

 Arrow Social Choice
Rationality
arrows theocrem


## Recall Condorcet's Idea

 nendem hronomics Nash condorcets Paradox ECO ParetoHarsanyiRational Choice Theory
ArrowSocial Choice TheorySen Arrow Social Choice
Rationality
arrows theocrem

| 3 | 5 | 7 | 6 |
| :--- | :--- | :--- | :--- |
| $a$ | $a$ | $b$ | $c$ |
| $b$ | $c$ | $d$ | $b$ |
| $c$ | $b$ | $c$ | $d$ |
| $d$ | $d$ | $a$ | $a$ |



## Recall Condorcet's Idea

 M, Gene hiow Fonomics Nash Condorcet's Paradox ECO COM ParetoHarsanyiRational Choice Theory
ArrowSocial Choice TheorySen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

| 3 | 5 | 7 | 6 |
| :--- | :--- | :--- | :--- |
| $a$ | $a$ | $b$ | $c$ |
| $b$ | $c$ | $d$ | $b$ |
| $c$ | $b$ | $c$ | $d$ |
| $d$ | $d$ | $a$ | $a$ |



## Condorcet Consistency

 Nash Rational Choice Theory ParetoHarsany Arrow Rationality

The Condorcet winner in a profile $\mathbf{P}$ is a candidate $x$ such that for all other candidates $y, \operatorname{Margin}_{\mathbf{P}}(x, y)>0$.

A voting method is Condorcet consistent, if for all $\mathbf{P}$, if $x$ is a Condorcet winner in $\mathbf{P}$, then $x$ is the unique winner according to the voting method.

## Borda, Plurality, Plurality with Runoff, Instant Runoff Voting, Coombs are not Condorcet consistent.

Can we find a voting method that is Condorcet consistent?

# Borda, Plurality, Plurality with Runoff, Instant Runoff Voting, Coombs are not Condorcet consistent. 

Can we find a voting method that is Condorcet consistent?

What about the method $F_{\text {cond }}(\mathbf{P})=\{a\}$ where $a$ is the Condorcet winner in $\mathbf{P}$ ?

## The Problem

 Mans cane hion seis PhiloSOph Nash emeatesemene $h$ Cono ArrowSocial Choice
Rationality

| Voter 1 | Voter 2 | Voter 3 |
| :---: | :---: | :---: |
| $a$ | $c$ | $b$ |
| $b$ | $a$ | $c$ |
| $c$ | $b$ | $a$ |

## The Problem



- Does the group prefer $a$ over $b$ ?


## The Problem



- Does the group prefer $a$ over $b$ ? Yes


## The Problem



- Does the group prefer $a$ over $b$ ? Yes
- Does the group prefer $b$ over $c$ ? Yes


## The Problem

| Voter 1 | Voter 2 | Voter 3 |
| :--- | :--- | :--- |


| $a$ | $c$ | $b$ |
| :---: | :---: | :---: |
| $b$ | $a$ | $c$ |
| $c$ | $b$ | $a$ |

- Does the group prefer $a$ over $b$ ? Yes
- Does the group prefer $b$ over $c$ ? Yes
- Does the group prefer $a$ over $c$ ? No


## Majority Cycle Example


 Nast conacuryage heconomics

Arrow Social Choice
Rationality
arrows theocrem


## Majority Cycle Example

 Menseme teer Economics

Arrow Social Choice
Ratrows theonem

| 100 | 100 | 100 |
| :---: | :---: | :---: |
| $a$ | $c$ | $b$ |
| $b$ | $a$ | $c$ |
| $c$ | $b$ | $a$ |



## Majority Cycle Example

Politics ases numivilume



ArrowSocial Choice
Rationality

| 2 | 2 | 1 |
| :--- | :--- | :--- |
| $a$ | $c$ | $b$ |
| $b$ | $a$ | $c$ |
| $c$ | $b$ | $a$ |



## Not a Majority Cycle

 , wamenturn ies PhiloSOph


Arrow Social Choice
Rationality
arrows theocem

| 1 | 5 | 3 |
| :--- | :--- | :--- |
| $a$ | $c$ | $b$ |
| $b$ | $a$ | $c$ |
| $c$ | $b$ | $a$ |



## Majority Cycles

 wavs wame weiceme Economics Nathemana choice Theory Arrow Social ChoiceRationality
Arrows theocem
A majority cycle is a list of candidates such that each has a positive margin over the next, and the last has a positive margin over the first.

## Majority Cycles

A majority cycle is a list of candidates such that each has a positive margin over the next, and the last has a positive margin over the first.

- Final decisions are extremely sensitive to institutional features such as who can set the agenda, arbitrary time limits place on deliberation, who is permitted to make motions, etc.


## Majority Cycles

A majority cycle is a list of candidates such that each has a positive margin over the next, and the last has a positive margin over the first.

- Final decisions are extremely sensitive to institutional features such as who can set the agenda, arbitrary time limits place on deliberation, who is permitted to make motions, etc.
- Is there empirical evidence that majority cycles have shown up in real elections?
W. Riker. Liberalism against Populism. Waveland Press, 1982.
G. Mackie. Democracy Defended. Cambridge University Press, 2003.


## Majority Cycles

A majority cycle is a list of candidates such that each has a positive margin over the next, and the last has a positive margin over the first.

- Final decisions are extremely sensitive to institutional features such as who can set the agenda, arbitrary time limits place on deliberation, who is permitted to make motions, etc.
- Is there empirical evidence that majority cycles have shown up in real elections?
W. Riker. Liberalism against Populism. Waveland Press, 1982.
G. Mackie. Democracy Defended. Cambridge University Press, 2003.
- How likely is a majority cycle?


## Majority Cycles - Examples

The 2007 Glasgow City Council election for Ward 5 (Govan): The election was run using Single-Transferable Vote to elect four candidates, but we can also imagine selecting a single winner based on these ballots.

## Majority Cycles - Examples

The 2007 Glasgow City Council election for Ward 5 (Govan): The election was run using Single-Transferable Vote to elect four candidates, but we can also imagine selecting a single winner based on these ballots.
The top three candidates were in a majority cycle:


$$
\begin{gathered}
\text { https://github.com/voting-tools/election-analysis/blob/ } \\
\text { main/glasgow_govan_2007.ipynb }
\end{gathered}
$$

## Majority Cycles - Examples

The 2021 Minneapolis City Council Election (Ward 2):


$$
\begin{gathered}
\text { https://github.com/voting-tools/election-analysis/blob/ } \\
\text { main/minneapolis_2021.ipynb }
\end{gathered}
$$

## Condorcet consistent voting methods

 wans rame therneconomics Nash Condorcets Parasox Rational Choice' Theory ParetoHarsany Arrow RationalityThe Condorcet winner in a profile $\mathbf{P}$ is a candidate $x$ such that for all other candidates $y$, $\operatorname{Margin}_{\mathbf{p}}(x, y)>0$.

A voting method is Condorcet consistent, if for all $\mathbf{P}$, if $x$ is a Condorcet winner in $\mathbf{P}$, then $x$ is the unique winner according to the voting method.

## Condorcet consistent voting methods

The Condorcet winner in a profile $\mathbf{P}$ is a candidate $x$ such that for all other candidates $y, \operatorname{Margin}_{\mathbf{P}}(x, y)>0$.

A voting method is Condorcet consistent, if for all $\mathbf{P}$, if $x$ is a Condorcet winner in $\mathbf{P}$, then $x$ is the unique winner according to the voting method.

We will study 3 Condorcet consistent voting methods: Copeland, Minimax, and Split Cycle.

## Condorcet consistent voting methods

The Condorcet winner in a profile $\mathbf{P}$ is a candidate $x$ such that for all other candidates $y$, $\operatorname{Margin}_{\mathbf{P}}(x, y)>0$.

A voting method is Condorcet consistent, if for all $\mathbf{P}$, if $x$ is a Condorcet winner in $\mathbf{P}$, then $x$ is the unique winner according to the voting method.

We will study 3 Condorcet consistent voting methods: Copeland, Minimax, and Split Cycle.

The Condorcet voting method Nanson was used in Marquette, Michigan, in the 1920s (Hoag and Hallett 1926, p. 491). To my knowledge, there are no cities using Condorcet consistent voting methods, but see the Condorcet Canada Initiative at https://condorcet.ca.

## Copeland

 Mas semen wisw Nash consorcets paraboxRational Choice Theory Pareto Harsanyi ArrowSocial Choice
Rationality

Say that the win-loss record for a candidate $x$ is the number of candidates that $x$ is majority preferred to minus the number of candidates that is majority preferred to $y$.

Then, any candidate with the largest win-loss record is a Copeland winner.

| 7 | 5 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| $a$ | $b$ | $d$ | $c$ |
| $b$ | $c$ | $b$ | $d$ |
| $c$ | $d$ | $c$ | $a$ |
| $d$ | $a$ | $a$ | $b$ |




Win-loss record for $a$ : $1-2=-1$

| 7 | 5 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| $a$ | $b$ | $d$ | $c$ |
| $b$ | $c$ | $b$ | $d$ |
| $c$ | $d$ | $c$ | $a$ |
| $d$ | $a$ | $a$ | $b$ |

Win-loss record for $a$ : $1-2=-1$ Win-loss record for $b: 2-1=1$

| 7 | 5 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| $a$ | $b$ | $d$ | $c$ |
| $b$ | $c$ | $b$ | $d$ |
| $c$ | $d$ | $c$ | $a$ |
| $d$ | $a$ | $a$ | $b$ |



Win-loss record for $a$ : $1-2=-1$
Win-loss record for $b: 2-1=1$
Win-loss record for $c: 2-1=1$

| 7 | 5 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| $a$ | $b$ | $d$ | $c$ |
| $b$ | $c$ | $b$ | $d$ |
| $c$ | $d$ | $c$ | $a$ |
| $d$ | $a$ | $a$ | $b$ |



Win-loss record for $a$ : $1-2=-1$
Win-loss record for $b: 2-1=1$
Win-loss record for $c: 2-1=1$
Win-loss record for $d$ : $1-2=-1$

| 7 | 5 | 4 | 3 |
| :--- | :--- | :--- | :--- |
| $a$ | $b$ | $d$ | $c$ |
| $b$ | $c$ | $b$ | $d$ |
| $c$ | $d$ | $c$ | $a$ |
| $d$ | $a$ | $a$ | $b$ |



Win-loss record for $a$ : $1-2=-1$
Win-loss record for $b: 2-1=1$
Win-loss record for $c: 2-1=1$
Win-loss record for $d: 1-2=-1$
$c$ and $b$ are the Copeland winners.

## 2007 Glasgow City Council

 Nash Condorcets Paradox
Rational Choice
Theory ParetoHarsany Arrowsocial Rality

The top three candidates were in a majority cycle:


All candidates are tied according to Copeland (each candidate's win-loss record is 0 ).

## 2007 Glasgow City Council

 waven same therome

ArrowSocial Choice TheorySen $\underset{\text { Arows theorem }}{\text { Rationality }}$

The top three candidates were in a majority cycle:


All candidates are tied according to Copeland (each candidate's win-loss record is 0 ).

Yet if we have to pick a single winner, and if we base our choice on the pairwise comparisons, it seems clear who the winner should be....

## 2007 Glasgow City Council

 waven same therome

ArrowSocial Choice TheorySen
The top three candidates were in a majority cycle:


All candidates are tied according to Copeland (each candidate's win-loss record is 0 ).

Yet if we have to pick a single winner, and if we base our choice on the pairwise comparisons, it seems clear who the winner should be....
It's Dornan.

## Minimax

 Mas seme temy conomics NashRational Choice Theory ParetoHarsany $\underset{\text { Arows theovem }}{\text { Rationality }}$

Say that the head-to-head loss of $x$ vs. $y$ is the margin of $y$ over $x$ : the number of voters that rank $y$ above $x$ minus the number of voters that rank $x$ above $y$.

Find the largest head-to-head loss for each candidate. Any candidate with the smallest such loss is a Minimax winner.



The largest head-to-head loss of Dornan is 21


The largest head-to-head loss of Dornan is 21
The largest head-to-head loss of Flanagan is 602


The largest head-to-head loss of Dornan is 21
The largest head-to-head loss of Flanagan is 602 The largest head-to-head loss of Hunter is 86


The largest head-to-head loss of Dornan is 21
The largest head-to-head loss of Flanagan is 602 The largest head-to-head loss of Hunter is 86 Dornan is the Minimax winner.


$d$ is the Minimax winner.

$d$ is the Minimax winner. $a$ and $b$ are the Copeland winners.

## Split Cycle

 Nashomences seme ECOMOMICS Arowsocil chice theorlysen1. In each majority cycle, identify the wins with the smallest margin in that cycle.

## Split Cycle

 Mas semen weymeronomics Rational Choice Theory ParetoHarsanyArrowSocial Choice TheorySen

1. In each majority cycle, identify the wins with the smallest margin in that cycle.
2. After completing step 1 for all cycles, discard the identified wins. All remaining wins count as defeats.
3. The candidates that are not defeated by any other candidate are the Split Cycle winners.

## Split Cycle

 Nash Consorcets Parresox Theory ParetoHarsany
Rational Choice
ArrowSocial Choice TheorySen

1. In each majority cycle, identify the wins with the smallest margin in that cycle.
2. After completing step 1 for all cycles, discard the identified wins. All remaining wins count as defeats.
3. The candidates that are not defeated by any other candidate are the Split Cycle winners.


## Split Cycle

 maysNateorem
Nash cous
Ration Rational Choice Theory ParetoHarsanyi
ArrowSocial Choice TheorySen

1. In each majority cycle, identify the wins with the smallest margin in that cycle.
2. After completing step 1 for all cycles, discard the identified wins. All remaining wins count as defeats.
3. The candidates that are not defeated by any other candidate are the Split Cycle winners.


## Example

Suppose an election produces the following majority margin graph (i.e., there are 7 more voters who ranked $\boldsymbol{b}$ above $\boldsymbol{a}$ than who ranked $\boldsymbol{a}$ above $\boldsymbol{b}$, etc.):


## Example

Suppose an election produces the following majority margin graph (i.e., there are 7 more voters who ranked $\boldsymbol{b}$ above $\boldsymbol{a}$ than who ranked $\boldsymbol{a}$ above $\boldsymbol{b}$, etc.):


Our first step is to identify the cycles...

## Example

Politics
 Natioum bien inconomics Arrow Social Choice
Rationality
arrows theocem



## Example



Next find the smallest margin in each cycle.

## Example



Next find the smallest margin in each cycle. These edges cannot be defeats.

## Example



## Voting Method Tutorial


 $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
https://voting-tutorial.streamlit.app/

## Which Voting Method is Best?

 Mas seme temo conomics Arrow
Rations theonality

A 2004 letter to the Washington Post sent by a local organizer of the Green Party, as quoted by Miller (2019, p. 119):
[Electoral engineering] isn't rocket science. Why is it that we can put a man on the moon but can't come up with a way to elect our president that allows voters to vote for their favorite candidate, allows multiple candidates to run and present their issues and... [makes] the 'spoiler' problem...go away?

