PHPE 400
 Individual and Group Decision Making

Eric Pacuit
University of Maryland
pacuit.org

Politics case maximi
Rease theorem chice Hume "nimoteem Philosophy Game The

Rational choice

 Mas semen wisw N NashRational Choice Theory ParetoHarsany
ArrowS Social Choice Theory Sen Arrowsocia Choice

A decision maker chooses rationally if her preferences are rational and there is nothing available that the decision maker prefers to what she chooses.

Rational choice

 Nens shemenem Economics Nash consorcets erasoRational Choice Theory, ParetoHarsany
ArrowSocial Choice Theory Sen Arrow Socialionality

A decision maker chooses rationally if her preferences are rational and there is nothing available that the decision maker prefers to what she chooses.

Mathematically describing preferences

notes.phpe400.info/mathematical-preliminaries/sets.html notes.phpe400.info/mathematical-preliminaries/relations.html

Answer the mathematical notation quiz on Tophat before your discussion section on Friday (the answers will be discussed during sections):
https://app.tophat.com/e/384276/content/1117900::
f6a2a05b-dd5c-44fd-9297-fd322cfab11a?open_fullscreen= true

Mathematical background: Relations

 wash sheme wesme Economics Nasc emeace feyay ArrowSocial ChoiceRationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.

Mathematical background: Relations

 whens.eme weine Economics Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

Mathematical background: Relations

 $\underset{\text { Rrrows theocem }}{\text { Ratity }}$

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

Mathematical background: Relations

 Nash
Rational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$$
b R a
$$

Mathematical background: Relations

 Nash Condorcets Parresox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice Theory Sen Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

a R a
$b R a$

$d R d$

Mathematical background: Relations

 Nashtonal Chioce Theory Peretetharsany Arrow Racial Chality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.

Example: $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$$
\begin{aligned}
& a R a \\
& b R a \\
& c R d \\
& a R C \\
& d R d
\end{aligned}
$$

Representing Preferences

Let X be a set of outcomes. A decision maker's preference over X is represented by relations on X :

- $P \subseteq X \times X$ where $a P b$ means that the decision maker strictly prefers a to b.

Representing Preferences

Let X be a set of outcomes. A decision maker's preference over X is represented by relations on X :

- $P \subseteq X \times X$ where $a P b$ means that the decision maker strictly prefers a to b.
- $I \subseteq X \times X$ where a I b means that the decision maker is indifferent between a and b.

Representing Preferences

Let X be a set of outcomes. A decision maker's preference over X is represented by relations on X :

- $P \subseteq X \times X$ where $a P b$ means that the decision maker strictly prefers a to b.
- $I \subseteq X \times X$ where a I b means that the decision maker is indifferent between a and b.
- $N \subseteq X \times X$ where $a \mathrm{Nb}$ means that the decision maker cannot compare a and b.

Strict Preference, I

 Ninh inome chere ECONOMICS Arowsocal ichoice गreeoringen $\underset{\text { Rrows theorem }}{\text { Ration }}$A decision maker's strict preference over a set X is represented as a relation $P \subseteq X \times X$.

Strict Preference, I

 Nash Consorcets parasoox
Rational Choice Theory ParetoHarsany Arrow Social Cholice
Rationality

A decision maker's strict preference over a set X is represented as a relation $P \subseteq X \times X$.

The underlying idea is that if P represents the decision maker's strict preference and $x P y$ (i.e., the decision maker strictly prefers x to y), then the decision maker would pay some non-zero amount money to trade y for x.

Strict Preference, I

 Nash Consorcets Paradox
Rational Choice Theory ParetoHarsany Arrow Sociaionality

A decision maker's strict preference over a set X is represented as a relation $P \subseteq X \times X$.

The underlying idea is that if P represents the decision maker's strict preference and $x P y$ (i.e., the decision maker strictly prefers x to y), then the decision maker would pay some non-zero amount money to trade y for x.
P is asymmetric: for all $x, y \in X$, if $x P y$, then it is not the case that $y P x$ (written not-y $P x$).

Indifference/Incommensurable

Suppose that P is an asymmetric relation on X (interpreted as a decision maker's strict preference). Suppose that $x, y \in X$ with not- $x P y$ and not- $y P x$.

Indifference/Incommensurable

 Nash
Rational Choice
Oheory ParetoHarsany $\underset{\substack{\text { Rrows tionality }}}{\substack{\text { Recrem }}}$

Suppose that P is an asymmetric relation on X (interpreted as a decision maker's strict preference). Suppose that $x, y \in X$ with not- $x P y$ and not- $y P x$. There are two reasons why this might hold:

1. The decision maker is indifferent between x and y. In this case, we write x I y.
2. The decision maker cannot compare x and y. In this case, we write $x N y$.

Preferences

 Ms.amician Nash Rational Choice Theory ParetoHarsany ArrowSocial ChoiceRationality

There are four distinct ways a decision maker can compare x and y :

1. $x P y$: the decision maker strictly prefers x to y.
2. $y P x$: the decision maker strictly prefers y to x.
3. x I y : the decision maker is indifferent between x and y.
4. $x N y$: the decision maker cannot compare x and y.

Symmetric/Asymmetric Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$
Asymmetric relation: for all $x, y \in X$, if $x R y$, then not- $y R x$

symmetric but not asymmetric

Symmetric/Asymmetric Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$
Asymmetric relation: for all $x, y \in X$, if $x R y$, then not- $y R x$

asymmetric but not symmetric

Symmetric/Asymmetric Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$
Asymmetric relation: for all $x, y \in X$, if x, then not- $y R x$

not symmetric and not asymmetric

Symmetric/Asymmetric Relations

 Nash Rational Choice Theory ParetoHarsany Arrow Sociationality
Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$
Asymmetric relation: for all $x, y \in X$, if $x R y$, then not- $y R x$
Irreflexive relation: for all $x \in X$, if not $-x$ R

Reflexive Relations

 Nash Consorcets Rational Choice Theory ParetoHarsanyi Arrow Rationality

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$

Reflexive Relations

Politics (ewnemionion Game Theory Downs
mars Theorem Gexis
Nash Consorcets Paradot ECOMOMICS Nash Consorcet's Paradox ELTOO ParetoHarsany Arrow Rationality

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$
E.g., $X=\{a, b, c, d\}$

Preferences - Minimal Constraints

 waven same imery ArrowSocial Choice TheorySen

A decision maker's preferences on X is represented by three relations $P \subseteq X \times X, I \subseteq X \times X$ and $N \subseteq X \times X$ satisfying the following minimal constraints:

1. For all $x, y \in X$, exactly one of $x P y, y P x, x I y$ and $x N y$ is true.
2. P is asymmetric
3. I is reflexive and symmetric.
4. N is symmetric.

A decision maker's preferences are rational when they are transitive and complete.

A decision maker's preferences are rational when they are transitive and complete.

Transitive Relations

 wens nemen wem Economics Arrow Social Choice
Rationality
arrows theocem

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$

Transitive Relations

 ways meme thery Nanomics Arrow Social Choice
Rationality
arrows theerem

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Transitive Relations

 Arrow Social Choice
Rationality
arrows theerem

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Transitive Relations

 Arrow Social Choice
Rationality
arrows theocem

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Transitive Relations

 Nastleana chace Theary peretebussan Arrow Social Choice
Rationality
arrows theocem

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Transitive Relations

 Arrow Social Choice
Rationality
arrows theocem

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Transitive Relations

 ways meme thery Nanomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Transitivity

Strict preference is transitive: for all x, y, z if $x P y$ and $y P z$ then $x P z$

Transitivity

 ArrowSocial Choice TheorySen Rat Sial ChalityRrows theoerem

Strict preference is transitive: for all x, y, z if $x P y$ and $y P z$ then $x P z$
? Indifference is transitive: for all x, y, z if $x I y$ and $y I z$ then $x I z$
? Non-comparability is transitive: for all x, y, z if $x N y$ and $y N z$ then $x N z$.

